• 제목/요약/키워드: sapphire substrates.

검색결과 255건 처리시간 0.025초

a-plane 사파이어기판에 증착된 Polycrystalline Diamond 박막의 특성 (Characteristics of a Polycrystalline Diamond Thin Film Deposited on a-plane Sapphire Substrate)

  • 싱얀탄;장태환;권진욱;김태규
    • 한국표면공학회지
    • /
    • 제53권3호
    • /
    • pp.109-115
    • /
    • 2020
  • In this study, polycrystalline diamond was synthesized by chemical vapor deposition (CVD). Diamond films were deposited on a-plane sapphire substrates while changing the concentration of methane for hydrogen (CH4/H2), and the concentrations of methane were 0.25, 0.5, 1, 2, 3 and 4 vol%, respectively. Crystallinity and nucleation density according to changes in methane concentration were investigated. At this time, the discharge power, vacuum pressure, and deposition time were kept constant. In order to deposit polycrystalline diamond, the sapphire substrate was etched with sulfuric acid and hydrogen peroxide (ratio 3:7), and the sapphire surface was polished for 30 minutes with 100 nm-sized nanodiamond particles. The deposited diamond thin film was analyzed by a scanning electron microscope (SEM), a Raman spectra, Atomic force microscope (AFM) and an X-ray diffractometer (XRD). By controlling the ratio of methane to hydrogen and performing appropriate pre-treatment conditions, a polycrystalline diamond thin film having excellent crystallinity and nucleation density was obtained.

사파이어 기판 방향성에 따른 GaN 박막의 미세구조 (Microstructure of GaN films on sapphire surfaces with various orientations)

  • 김유택
    • 한국결정성장학회지
    • /
    • 제9권2호
    • /
    • pp.162-167
    • /
    • 1999
  • 3가지 방향성을 가진 사파이어 기판 위에 GaN 박막을 OMVPE방식으로 증착시켜 증착된 GaN epilayer를 투과전자현미경으로 분석하여 각 미세구조의 차이를 비교분석하였다. 3 가지 방향 모두에서 GaN 증착층이 관찰되어졌으며 그중 가장 좋은 경계면의 상태와 단일결정성을 보여준 것은 사파이어{0001} 방향의 기판을 사용한 경우였다. 결함들도 {0001} 방향의 기판을 사용한 경우에서 가장 적게 나타났다. 모든 경우에서 buffer layer는 발견되어지지 않았고 그럼에도 불구하고 경계면에서의 격자 뒤틀림이 일어나는 지역이 수 나노미터(nanometer) 정도밖에 안되는 우수한 경계면들이 관찰되었다. 따라서 일반적으로 GaN 박막 증착시에 가장 많이 사용되는 사파이어 basal plane 외에도 결함이 많기는 하지만, {1120}와 {1102} plane 위에도 GaN 증착층이 buffer layer 없이 증착 될 수 있다는 사실을 TEM 관찰을 통하여 알 수 있었으며 사파이어 {0001}면를 기판으로 사용한 경우에 미세구조 측면에서 볼 때 hetero-epitaxial한 GaN 박막층을 얻을 수 있는 것을 확인하였다.

  • PDF

Planar Type Flexible Piezoelectric Thin Film Energy Harvester Using Laser Lift-off

  • Noh, Myoung-Sub;Kang, Min-Gyu;Yoon, Seok Jin;Kang, Chong-Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.489.2-489.2
    • /
    • 2014
  • The planar type flexible piezoelectric energy harvesters (PEH) based on PbZr0.52Ti0.48O3 (PZT) thin films on the flexible substrates are demonstrated to convert mechanical energy to electrical energy. The planar type energy harvesters have been realized, which have an electrode pair on the PZT thin films. The PZT thin films were deposited on double side polished sapphire substrates using conventional RF-magnetron sputtering. The PZT thin films on the sapphire substrates were transferred by PDMS stamp with laser lift-off (LLO) process. KrF excimer laser (wavelength: 248nm) were used for the LLO process. The PDMS stamp was attached to the top of the PZT thin films and the excimer laser induced onto back side of the sapphire substrate to detach the thin films. The detached thin films on the PDMS stamp transferred to adhesive layer coated on the flexible polyimide substrate. Structural properties of the PZT thin films were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). To measure piezoelectric power generation characteristics, Au/Cr inter digital electrode (IDE) was formed on the PZT thin films using the e-beam evaporation. The ferroelectric and piezoelectric properties were measured by a ferroelectric test system (Precision Premier-II) and piezoelectric force microscopy (PFM), respectively. The output signals of the flexible PEHs were evaluated by electrometer (6517A, Keithley). In the result, the transferred PZT thin films showed the ferroelectric and piezoelectric characteristics without electrical degradation and the fabricated flexible PEHs generated an AC-type output power electrical energy during periodically bending and releasing motion. We expect that the flexible PEHs based on laser transferred PZT thin film is able to be applied on self-powered electronic devices in wireless sensor networks technologies. Also, it has a lot of potential for high performance flexible piezoelectric energy harvester.

  • PDF

수열합성법을 이용한 산화아연 나노와이어의 에피택시 성장 (Epitaxial Growth of ZnO Nanowires on Sapphire (001) Substrates Using a Hydrothermal Process)

  • 함다슬;정병언;양명훈;이종관;최영빈;강현철
    • 한국전기전자재료학회논문지
    • /
    • 제31권7호
    • /
    • pp.502-509
    • /
    • 2018
  • Epitaxial ZnO nanowires (NWs) were synthesized on sapphire (001) substrates using a hydrothermal process. The effects of the pH value of the precursor solution on the structural and optical properties of the resulting NWs was studied. The epitaxial relationship and the domain matching configuration between the sapphire (001) substrate and the as-grown ZnO NWs were determined using synchrotron X-ray diffraction measurements. The (002) plane of $w{\ddot{u}}rtzite$ ZnO NW grows in the surface normal direction parallel to the sapphire (001) direction. However, three types of in-plane domain matching configurations were observed, such as the on-position, $30^{\circ}$-rotated position, and ${\pm}8.5^{\circ}$-rotated position relative to the on-position, which might be attributed to inheriting the in-plane domain configuration of the ZnO seed layer.

The Role of (111)MgO Underlayer in Growth of c-axis Oriented Barium Ferrite Films

  • Erickson, D.W.;Hong, Y.K.;Gee, S.H.;Tanaka, T.;Park, M.H.;Nam, I.T.
    • Journal of Magnetics
    • /
    • 제9권4호
    • /
    • pp.116-120
    • /
    • 2004
  • Hexagonal barium-ferrite ($BaFe_{12}O_{19}$, magnetoplumbite structure; BaM) film with perpendicularly c-axis orientation was successfully deposited on (100) silicon substrates with an MgO (111) underlayer by rf diode sputtering and in-situ heating at $920^{\circ}C$. The magnetic and structural properties of 0.27 ${\mu}m$ thick BaM films on MgO (111) underlayers were compared to films of the same thickness deposited onto single-crystal MgO (111) and c-plane ($000{\ell}$) sapphire ($Al_2O_3$) substrates by vibrating sample magnetometry (VSM), x-ray diffractometer (XRD), and atomic force microscopy (AFM). The thickness dependence of MgO (111) underlayers on silicon wafer was found to have a large effect on both magnetic and structural properties of the BaM film. The thickness of 15 nm MgO (111) underlayers produced BaM films with almost identical magnetic and structural properties as the single-crystal substrates; this can be explained by the lower surface roughness for thinner underlayer thicknesses. The magnetization saturation ($M_s$) and the ratio $H_{cII}/H_{c{\bot}}$ for the BaM film with a 15 nm MgO (111) underlayer is 217 emu/cc and 0.24, respectively. This is similar to the results for the BaM films deposited on the single-crystal MgO (111) and sapphire substrates of 197 emu/cc and 0.10, 200 emu/cc and 0.12, respectively. Therefore, the proposed MgO (111) underlayer can be used in many applications to promote c-axis orientation without the cost of expensive substrates.

사파이어 기판 위에 증착된 ZnO 박막의 후열처리에 따른 발광특성 연구 (Effects of post-annealing treatment at various temperature on the light emission properties of ZnO thin films on sapphire)

  • 강홍성;심은섭;강정석;김종훈;이상렬
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.119-122
    • /
    • 2001
  • ZnO thin films on (001) sapphire substrates have been deposited by pulsed laser deposition(PLD) technique at the oxygen pressure of 350 mTorr. In order to investigate the effect of post-annealing treatment with oxygenn pressure of 350 mTorr on the optical property of ZnO thin films, films have been annealed at various substrate temperatures after deposition. After post-annealing treatment in the oxygen ambient, the optical properties of the ZnO thin films were characterized by PL(Photoluminescence) and structural properties of the ZnO were characterized by XRD, and have investigated structural property and optical property for application of light emission device.

  • PDF

랩그라인딩 후 사파이어 웨이퍼의 표면거칠기가 화학기계적 연마에 미치는 영향 (Effect of Surface Roughness of Sapphire Wafer on Chemical Mechanical Polishing after Lap-Grinding)

  • 서준영;이현섭
    • Tribology and Lubricants
    • /
    • 제35권6호
    • /
    • pp.323-329
    • /
    • 2019
  • Sapphire is currently used as a substrate material for blue light-emitting diodes (LEDs). The market for sapphire substrates has expanded rapidly as the use of LEDs has extended into various industries. However, sapphire is classified as one of the most difficult materials to machine due to its hardness and brittleness. Recently, a lap-grinding process has been developed to combine the lapping and diamond mechanical polishing (DMP) steps in a single process. This paper studies, the effect of wafer surface roughness on the chemical mechanical polishing (CMP) process by pressure and abrasive concentration in the lap-grinding process of a sapphire wafer. In this experiment, the surface roughness of a sapphire wafer is measured after lap-grinding by varying the pressure and abrasive concentration of the slurry. CMP is carried out under pressure conditions of 4.27 psi, a plate rotation speed of 103 rpm, head rotation speed of 97 rpm, and slurry flow rate of 170 ml/min. The abrasive concentration of the CMP slurry was 20wt, implying that the higher the surface roughness after lapgrinding, the higher the material removal rate (MRR) in the CMP. This is likely due to the real contact area and actual contact pressure between the rough wafer and polishing pad during the CMP. In addition, wafers with low surface roughness after lap-grinding show lower surface roughness values in CMP processes than wafers with high surface roughness values; therefore, further research is needed to obtain sufficient surface roughness before performing CMP processes.

사파이어 {1120} 표면에 증착된 GaN 박막의 미세구조 (Microstructure of GaN films on sapphire{1120} surfaces)

  • 김유택;박진호;신건철
    • 한국결정성장학회지
    • /
    • 제8권3호
    • /
    • pp.377-382
    • /
    • 1998
  • 기존보다 낮은 온도에서 buffer layer를 도입하지 않고 직접 사파이어{1120} 기판위에 GaN 박막을 OMVPE방식으로 증착시킨 결과 양호한 계면상태를 가지는 양질의 GaN epilayer를 얻을 수 있었다. GaN epilayer의 주된 성장 방향은 <0002>로 밝혀졌고, 적어도 4개 종류 이상의 epilayer들이 서로 경쟁적으로 성장하는 것으로 판단되어진다. Buffer layer의 부재에도 불구하고 계면의 adhesion이 우수하였고 다만 계면으로부터 2~3nm이내의 lattice들에서 기판과의 lattice mismatch에 의한 distortion이 발견되어졌다. 따라서 일반적으로 GaN 박막 증착시에 가장 많이 사용되는 사파이어 basal plane 외에 {1120} plane 위에도 양질의 GaN epilayer가 buffer layer 없이 증착된다는 사실을 TEM 관찰을 통하여 알 수 있었다.

  • PDF

Growth and Characteristics of Near-UV LED Structures on Wet-etched Patterned Sapphire Substrate

  • Cheong, Hung-Seob;Hong, Chang-Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제6권3호
    • /
    • pp.199-205
    • /
    • 2006
  • Patterned sapphire substrates (PSS) were fabricated by a simple wet etching process with $SiO_2$ stripe masks and a mixed solution of $H_2SO_4$ and $H_3PO_4$. GaN layers were epitaxially grown on the PSS under the optimized 2-step growth condition of metalorganic vapor deposition. During the 1st growth step, GaN layers with triangular cross sections were grown on the selected area of the surface of the PSS, and in the 2nd growth step, the GaN layers were laterally grown and coalesced with neighboring GaN layers. The density of threading dislocations on the surface of the coalesced GaN layer was $2{\sim}4\;{\times}\;10^7\;cm^{-2}$ over the entire region. The epitaxial structure of near-UV light emitting diode (LED) was grown over the GaN layers on the PSS. The internal quantum efficiency and the extraction efficiency of the LED structure grown on the PSS were remarkably increased when compared to the conventional LED structure grown on the flat sapphire substrate. The reduction in TD density and the decrease in the number of times of total internal reflections of the light flux are mainly attributed due to high level of scattering on the PSS.

Effect of electron-beam irradiation on leakage current of AlGaN/GaN HEMTs on sapphire

  • Oh, Seung Kyu;Song, Chi Gyun;Jang, Taehoon;Kwak, Joon Seop
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권6호
    • /
    • pp.617-621
    • /
    • 2013
  • This study examined the effect of electron-beam (E-beam) irradiation on the electrical properties of n-GaN, AlGaN and AlGN/GaN structures on sapphire substrates. E-beam irradiation resulted in a significant decrease in the gate leakage current of the n-GaN, AlGaN and HEMT structure from $4.0{\times}10^{-4}A$, $6.5{\times}10^{-5}A$, $2.7{\times}10^{-8}A$ to $7.7{\times}10^{-5}A$, $7.7{\times}10^{-6}A$, $4.7{\times}10^{-9}A$, respectively, at a drain voltage of -10V. Furthermore, we also investigated the effect of E-beam irradiation on the AlGaN surface in AlGaN/GaN heterostructure high electron mobility transistors(HEMTs). The results showed that the maximum drain current density of the AlGaN/GaN HEMTs with E-beam irradiation was greatly improved, when compared to that of the AlGaN/GaN HEMTs without E-beam irradiation. These results strongly suggest that E-beam irradiation is a promising method to reduce leakage current of AlGaN/GaN HEMTs on sapphire through the neutralization the trap.