• Title/Summary/Keyword: sapphire

Search Result 829, Processing Time 0.03 seconds

Superconductivity and Surface Morphology of YBCO/CeO$_2$ Thin Films on Sapphire Substrate by Pulsed Laser Deposition (사파이어 기판 위에 펄스-증착법으로 성장한 YBCO/CeO2박막의 초전도성과 표면 모폴러지)

  • Kang, Kwang-Yong;J. D. Suh
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.88-91
    • /
    • 2003
  • The crystal structure and properties of YBa$_2$Cu$_3$$O_{7-x}$(YBCO) and CeO$_2$ thin films deposited on r-plane (1(equation omitted)02) sapphire substrate by pulsed- laser deposition(PLD) have been investigated. C-axis oriented epitaxial YBCO thin films with critical temperature (Tc) of 88 K were routinely grown on (200) oriented CeO$_2$ buffer layers with thickness in the range between 20 to 80 nm. When the thickness of the (200)oriented CeO$_2$ buffer layer increases over than 80 nm, the superconducting properties of YBCO thin films on that were deteriorated. The decrease in Tc of YBCO thin films was explained by the microcrack formation in CeO$_2$ buffer layer. These results indicate that the thickness of the (200) oriented CeO$_2$ buffer layer is critical to the epitaxial YBCO thin nim growth on r-plane (1(equation omitted)02) sapphire substrate.e.

  • PDF

Structural Control of Single-Crystalline Metal Oxide Surfaces toward Bioapplications

  • Ogino, Toshio
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.112-112
    • /
    • 2013
  • Well-defined surfaces of single-crystalline solid materials are starting points of self-organizationof nanostructures and chemical reactions controlled in nanoscale. Although highly ordered atomicarrangement can be obtained on semiconductor surfaces, they can be maintained only in vacuumand not in air or in aqueous environment. Since single-crystalline metal oxide surfaces arechemically stable and no further oxidation occurs, their atomic structures can be utilized fornanofabrication in liquid processes, nanoelectrochemistry and nanobiotechnology. Sapphire is oneof the most stable metal oxides and its crystalline quality is excellent, as can be applied to electronicdevices that require ultralow defect densities. We recently found that chemical phase separationoccurs on sapphire surfaces by annealing processes and the formed nanodomains exhibit specificproperties in air and in water [1,2]. In our experiments, highly selective and controllable adsorptionof various protein molecules is observed on the phase-separated surfaces though the materials andcrystallographic orientations are identical [3,4]. Planar lipid bilayers supported on thephase-separated sapphire surface also exhibit a specific formation site selectivity [5]. Chemicalnanodomains appear on other metal-oxide surfaces, such as well-ordered titania surfaces. Wedemonstrate that surface chemistry of the nanodomains can be characterized in aqueousenvironment using atomic force microscopy equipped with colloidal tips and then show adsorptionand desorption behaviors of various proteins on the phase-separated surfaces.

  • PDF

Fabrication of Transition Metal doped Sapphire Single Crystal by High Temperature and Pressure Acceleration Method

  • Park, Eui-Seok;Jung, Choong-Ho;Kim, Moo-Kyung;Kim, Hyung-Tae;Kim, Yoo-Taek;Hong, Jung-Yoo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.09a
    • /
    • pp.97-102
    • /
    • 1998
  • Transition metal Cr3+ and Fe3+ ion was diffused in white sapphire {0001}, {1010} crystal plane which were grown by the Verneuil method. It enhanced and changed the physical, electrical and optical properties of sapphires. After mixing the metallic oxide and metal powder, it were used for diffusion. Metallic oxide was synthesized by precipitation method and it's composition was mainly alumina which doped with chromium or ferric oxide. In case using metallic oxide, the dopping was slowly progressed and it needed the longer duration time and higher temperature, relatively. Metallic powder was vapoured under 1x10-4 torr of vacuum pressure at 1900(iron metal) and 2050(chromium)℃, first step. Diffusion condition were kept by 6atm of N2 accelerating pressure at 2050∼2150℃. Each surface density of sapphire crystal are 0.225(c) and 0.1199atom/Å2(a). The color of the Cr-doped sapphires was changed to red. Dopping reaction was come out more deep in th plane of {1010} than {0001}. It was speculated that the planar density was one of the factors to determine diffusion effect.

  • PDF

Effect of Temperature Gradient on the Characteristics of GaN Nanorods Grown on R-plane Sapphire Substrates (기판 주변 반응 기체와 기판 사이의 온도 차이에 따른 r-면 사파이어 기판에 성장된 길화갈륨 나노 막대의 특성 변화 연구)

  • Shin, Bo-A;Kim, Chin-Kyo
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.1
    • /
    • pp.44-48
    • /
    • 2009
  • The effect of temperature gradient between the substrate and ambient gas on the structural characteristics of GaN nanorods grown on r-plane sapphire substrates by hydride vapor phase epitaxy was investigated. The density, diameter, and length strongly depended on the tempearture gradient. In addition, the cross-sectional shape of the nanorrods at the end of growth was found to be more dependedent on the temperature of a substrate itself than the temperature gradient.

Color Enhancement of Natural Sapphires by High Pressure High Temperature Process

  • Song, Jeongho;Noh, Yunyoung;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.2
    • /
    • pp.165-170
    • /
    • 2015
  • We employed the high-pressure high temperature (HPHT) process to enhance the colors of natural sapphires to obtain a vivid blue. First, we analyze the content of the coloring agent $Fe_2O_3$ using the wavelength dispersive X-ray fluorescence (WD-XRF) method. The HPHT procedure operates under 1 GPa at various temperatures of 1700, 1750, and $1800^{\circ}C$ for 5 minutes using a cubic press. We determine the color changes using the optical microscopic images, UV-VIS near-infrared (NIR) spectra, micro-Raman spectra, and Fourier transform-infrared (FT-IR) spectra for all sapphire samples before and after the treatment. The optical microscopic results indicate that the HPHT process can enhance the sapphire color to a vivid blue at temperatures above $1750^{\circ}C$. The UV-VIS-NIR spectra identify the color changes explicitly and quantitatively through providing the Lab color scales and color differences. Both results demonstrate that the colors of natural sapphires can be enhanced to a vivid blue using the HPHT process above $1750^{\circ}C$ under 1 GPa for 5 minutes.

A Study on Improvement of the Light Emitting Efficiency on Flip Chip LED with Patterned Sapphire Substrate by the Optical Simulation (광학 시뮬레이션을 이용한 Patterned Sapphire Substrate에 따른 Flip Chip LED의 광 추출 효율 변화에 대한 연구)

  • Park, Hyun Jung;Lee, Dong Kyu;Kwak, Joon Seop
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.10
    • /
    • pp.676-681
    • /
    • 2015
  • Recently many studies being carried out to increase the light efficiency of LED. The external quantum efficiency of LED, generally the light efficiency, is determined by the internal quantum efficiency and the light extraction efficiency. The internal quantum efficiency of LED was already reached to more than 90%, but the light extraction efficiency is still insufficient compared with the internal quantum efficiency because the total internal reflection is generated in the interface between the LED chip and air. Thus, we studied about flip chip LED with PSS and performed the optical simulation which find more optimized PSS for flip chip LED to increase the light extraction efficiency. Decreasing of the total internal reflection and effect of diffused reflection according to PSS improved the light extraction efficiency. To get more higher the efficiency, we simulated flip chip with PSS that the parameters are arrangement, edge spacing, radius, height and shape of PSS.

Fabrication of a Novel High Temperature Platinum Resistance Thermometer (새로운 고온백금저항온도계의 설계 및 제작)

  • Gam, K.S.;Park, J.C.;Chang, C.G.
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.24-32
    • /
    • 2001
  • High temperature platinum resistance thermometers(HTPRTs) were designed and fabricated using a synthetic sapphire single crystal as sensor former, insulation and protection tube, and its characteristics was investigated. Several fixed points measurement showed that the sapphire HTPRTs were satisfied with the ITS-90 criteria as the interpolating thermometer. The temperature-resistance characteristics of HTPRT was fitted to the quadratic relationship in the temperature range from $500^{\circ}C$ to $1500^{\circ}C$. The reproducibility of Cu freezing point realized using the sapphire HTPRT was ${\pm}19.2\;mK$. The insulation resistance of the HTPRT exponentially decreased as temperature increased, and showed to $63\;k{\Omega}({\sim}31.5\;mK)$ at $1500^{\circ}C$.

  • PDF

Growth and characterization of ZnO thin films on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy (R-면 사파이어 기판 위에 플라즈마 분자선 에피탁시법을 이용한 산화아연 박막의 성장 및 특성평가)

  • Han, Seok-Kyu;Hong, Soon-Ku;Lee, Jae-Wook;Lee, Jeong-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.155-156
    • /
    • 2006
  • Single crystalline ZnO fims were successfully grown on r-plane sapphire substrate by plasma-assisted molecular beam epitaxy. Epitaxial relationship between the ZnO film and the-r-plane sapphire was determined to be [-1101]$Al_2O_3\;{\parallel}$ [0001]ZnO, [11-20]$Al_2O_3\;{\parallel}$ [-1100]ZnO based on the in-situ RHEED analysis and confirmed again by HRXRD measurements. Grown (11-20) ZnO films showed faceted structure along the <0001> direction and the RMS roughness was about 4 nm.

  • PDF

Study on the Growth Characteristics of Think GaN on Sapphire Substrate Using Hydride Vapor phase Epitaxy (Hydride Vapor Phase Epitaxy를 이용한 Sapphire기판 상에 GaN후막의 성장특성에 관한 연구)

  • Lee, Jeong-Uk;Yu, Ji-Beom;Byeon, Dong-Jin;Geum, Dong-Hwa
    • Korean Journal of Materials Research
    • /
    • v.7 no.6
    • /
    • pp.492-497
    • /
    • 1997
  • HVPE를 이용하여 sapphire기판 위에서 후막 GaN의 성장특성을 조사하였다. 성장온도가 100$0^{\circ}C$에서 110$0^{\circ}C$로 증가하여도 성장속도는 영향을 받지않고 50-60$\mu\textrm{m}$/hr의 성장속도를 나타내었으나 표면특성과 결정성은 향상되었다. 110$0^{\circ}C$에서 성장된 후막 GaN는 DCXRD측정결과 451arcsec의 반티폭을 나타내었으며, PL측정결과 10K에서 19meV의 반치폭을 나타내었다. Ga 공급원의 온도가 93$0^{\circ}C$에서 77$0^{\circ}C$로 감소하여도 성장속도는 영향을 받지 않았으나, 77$0^{\circ}C$의 온도에서 GaN의 결정성이 향상되었다. HCI의 양이 5sccm에서 20sccm으로 증가함에 따라 성장속도가 15$\mu\textrm{m}$/hr에서 60$\mu\textrm{m}$/hr으로 증가하였으며, 표면특성도 향상되었다.

  • PDF

Optical Characterization of Light-Emitting Diodes Grown on the Cylinder Shape 300 nm Diameter Patterned Sapphire Substrate (300 nm Diameter Cylinder-Shape 나노패턴 기판을 이용한 LEDs의 광학적 특성)

  • Kim, Sang Mook;Kim, Yoon Seok
    • Korean Journal of Materials Research
    • /
    • v.29 no.1
    • /
    • pp.59-64
    • /
    • 2019
  • This study investigates the optical characteristics of InGaN multiple quantum wells(MQWs) light emitting diodes(LEDs) on planar sapphire substrates(PSSs), nano-sized PSS(NPSS) and micro-sized PSS(MPSS). We obtain the results as the patterning size of the sapphire substrates approach the nanometer scale: The light from the back side of the device increases and the total light extraction becomes larger than the MPSS- and planar-LEDs. The experiment is conducted by Monte Carlo ray-tracing, which is regarded as one of the most suitable ways to simulate light propagation in LEDs. The results show fine consistency between simulation and measurement of the samples with different sized patterned substrates. Notably, light from the back side becomes larger in the NPSS LEDs. We strongly propose that the increase in the light intensity of NPSS LEDs is due to an abnormal optical distribution, which indicates an increase of extraction probability through NPSS.