• Title/Summary/Keyword: sap temperature

Search Result 71, Processing Time 0.029 seconds

The Effect of Winter Temperature on the Survival of Lantern Fly, Lycorma delicatula (Hemiptera: Fulgoridae) Eggs (동절기 온도가 꽃매미 월동 알의 생존율에 미치는 영향)

  • Lee, Young Su;Jang, Myoung Jun;Kim, Jin Young;Kim, Jun Ran
    • Korean journal of applied entomology
    • /
    • v.53 no.3
    • /
    • pp.311-315
    • /
    • 2014
  • Lantern fly(Lycorma delicatula) is a major invasive pest that causes withering symptom of agricultural crops by sucking tree sap and sooty mold symptom by producing honeydew. This study was conducted to investigate the occurrence pattern of lantern fly in grape orchards in Gyeonggi area and the effect of winter temperature on L. delicatula egg survival during 2010 to 2013. In Gyeonggi areas, overwintered L. delicatula eggs began to hatch from early May and nymphs peaked in mid May. Adults emerged from late July and laid eggs until early November. The survival of L. delicatula eggs during overwintering was largely affected by winter temperatures. The relationship between the number of days below a threshold temperature (x) in January and the survival rate of overwintering L. delicatula eggs (y) was using linear regression model. The best model selected by the lowest RSS (residual sum of square) between predicted and actual survival was y = -1.0486 x + 94.496 ($R^2=0.7067$) with $-11^{\circ}C$ of threshold temperature. These results should be helpful to conduct L. delicatula management programs, since the results provided relivable prediction for the winter survival of L. delicatula eggs and the phenology of egg hatch in the spring.

Regulation of Chilling Tolerance in Rice Seedlings by Plant Hormones

  • Chu, Chun;Lee, Tse-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.3
    • /
    • pp.288-298
    • /
    • 1992
  • Since the major important factors limiting plant growth and crop productivity are environmental stresses, of which low temperature is the most serious. It has been well known that many physiological processes are alterant in response to the environmental stress. With regard to the relationship between plant hormones and the regulation of chilling tolerance in rice seedlings, the major physiological roles of plant hormones: abscisic acid, ethylene and polyamines are evaluated and discussed in this paper. Rice seedlings were grown in culture solution to examine the effect of such plant hormones on physiological characters related to chilling tolerance and also to compare the different responses among tested cultivars. Intact seedlings about 14 day-old were chilled at conditions of 5$^{\circ}C$ and 80% relative humidity for various period. Cis-(+)-ABA content was measured by the indirect ELISA technique. Polyamine content and ethylene production in leaves were determined by means of HPLC and GC respectively. Chilling damage of seedlings was evaluated by electrolyte leakage, TTC viability assay or servival test. Our experiment results described here demonstrated the physiological functions of ABA, ethylene, and polyamines related to the regulation of chilling tolerance in rice seedlings. Levels of cis-(+)-ABA in leaves or xylem sap of rice seedlings increased rapidly in response to 5$^{\circ}C$ treatment. The tolerant cultivars had significant higher level of endogenous ABA than the sensitive ones. The ($\pm$)-ABA pretreatment for 48 h increased the chilling tolerance of the sensitive indica cultivar. One possible function of abscisic acid is the adjustment of plants to avoid chilling-induced water stress. Accumulation of proline and other compatible solutes is assumed to be another factor in the prevention of chilling injuies by abscisic acid. In addition, the expression of ABA-responsive gene is reported in some plants and may be involving in the acclimation to low temperature. Ethylene and its immediate precusor, 1-amincyclopropane-1-carboxylic acid(ACC) increased significantly after 5$^{\circ}C$ treatment. The activity of ACC synthase which converts S-adenosylmethionine (SAM) to ACC enhanced earlier than the increase of ethylene and ACC. Low temperature increased ACC synthase activity, whereas prolonged chilling treatment damaged the conversion of ACC to ethylene. It was shown that application of Ethphon was beneficial to recovering from chilling injury in rice seedlings. However, the physiological functions of chilling-induced ethylene are still unclear. Polyamines are thought to be a potential plant hormone and may be involving in the regulation of chilling response. Results indicated that chilling treatment induced a remarkable increase of polyamines, especially putrescine content in rice seedlings. The relative higher putrescine content was found in chilling-tolerant cultivar and the maximal level of enhanced putrescine in shoot of chilling cultivar(TNG. 67) was about 8 folds of controls at two days after chilling. The accumulation of polyamines may protect membrane structure or buffer ionic imbalance from chilling damage. Stress physiology is a rapidly expanding field. Plant growth regulators that improve tolerance to low temperature may affect stress protein production. The molecular or gene approaches will help us to elucidate the functions of plant hormones related to the regulation of chilling tolerance in plants in the near future.

  • PDF

Effects of Temperature on the Development and Reproduction of Four Species of Aphids (Hemiptera: Aphididae) Damaging Cereal Crops (식량작물에 피해를 주는 진딧물 4종의 발육과 번식에 미치는 온도의 영향)

  • Ahn, Jeong Joon;Choi, Kyung San;Seo, Bo Yoon;Jung, Jin Kyo
    • Korean journal of applied entomology
    • /
    • v.60 no.4
    • /
    • pp.339-355
    • /
    • 2021
  • Aphids can damage plants directly by absorbing their phloem sap and indirectly by transferring plant viruses and causing sooty mold. We compared the thermal effect on the development, survivorship, and reproduction of four cereal crop-damaging aphid species, Rhopalosiphum padi, Aulacorthum solani, Aphis craccivora, and Acyrthosiphon pisum using a life table analysis method. We investigated the stage-specific development period, survivorship, adult longevity, and fecundity of the above mentioned four aphids at 10, 15, 20, 25, and 30℃, respectively, and analyzed their life table parameters using the age-stage, two-sex life table analysis. A. solani nymphs could not complete their development to adulthood at 30℃. The intrinsic increase rate of R. padi was the highest at all tested temperatures except for that at 15℃ (0.12, 0.34, 0.47, and 0.32 at 10, 20, 25, and 30℃, respectively), and that of A. pisum displayed negative values at 30℃ (-0.04). It is speculated that R. padi would be a dominant species under high temperature conditions and A. solani is a highly adaptive species at low temperatures through the comparative analysis of the life table parameters of four aphid species damaging to cereal crops.

The Study of continuous cardiac output measurement module development of the cardiopulmonary function patient of using the Swan-Ganz Catheter (Swan-Ganz 카테터를 이용한 심폐기능 이상 환자의 지속적 심박출량 측정 모듈 개발)

  • Lim, Byeong-Seon;Han, Seung-Hwan;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.959-964
    • /
    • 2013
  • This study materialized the new module which enables to measure more precise data than the existing modules in order to examine the cardiac disorder critical patient's state by using Swan-Ganz Catheter. There was bolus type CO(Cardiac Output) module which measured CO by measuring the blood changes in temperature and recovery time by injecting cold sap into the heart in the past, but recently, it is not used in most of hospitals due to limit of difficulty of continuous monitoring for the patients. To overcome this limit, the continuous cardiac output measurement platform was materialized to enable the continuous monitoring for patients. The wasted cost issues because of introducing the expensive imported equipment to observe the critical patient`s state with abnormal cardiopulmonary function in the hospitals can be solved by using this new module, and the problem of existing modules should be supplemented for more accurate diagnosis by collecting more precise data.

Effect of Grafting Cultivation on the Growth of Hot Pepper (고추 접목재배가 생육에 미치는 영향)

  • Kim Eun-Hyun;Kim Hak-Jin;Kwon Byung-Sun;Lim June-Taeg;Hyun Kyu-Hwan;Kim Do-Young;Shin Dong-Young
    • Korean Journal of Plant Resources
    • /
    • v.18 no.1
    • /
    • pp.78-84
    • /
    • 2005
  • Charactertistics of growth from graft induced three stock of red pepper cultivar were analysed. R-safe rootstock was more higher and vigorous than that of the Yeok kang, Konesian hot cultivar at seedling stage and had good characteristics for grafting in the space of cut surface and the amount of sap released. Numbers of branches were more numerous in the grafted plants than those of non-grafted as grafting affected their growths in the process of branching. There was no distinct difference in plant height among the different rootstock. However the R-safe rootstock showed considerably high growth in the 41st days after grafting. Grafting was effective in the early flowering and the R-safe was the earliest in flowering because of it's good growth under the low temperature.

A Review of Withering in the Processing of Black Tea

  • Deb, Saptashish;Jolvis Pou, K.R.
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.365-372
    • /
    • 2016
  • Purpose: Tea is the most frequently consumed drink worldwide, next to water. About 75% of the total world tea production includes black tea, and withering is one of the major processing steps critical for the quality of black tea. There are two types of tea withering methods: physical and chemical withering. Withering can be achieved by using tat, tunnel, drum, and trough withering systems. Of these, the trough withering system is the most commonly used. This study focuses on the different types of withering, their effect on the various quality attributes of tea, and other aspects of withering methods that affect superior quality tea. Results: During physical withering, tea shoots loose moisture content that drops from approximately 70-80% to 60-70% (wet basis). This leads to increased sap concentration in tea leaf cells, and turgid leaves become flaccid. It also prevents tea shoots from damage during maceration or rolling. During chemical withering, complex chemical compounds break down into simpler ones volatile flavor compounds, amino acids, and simple sugars are formed. Withering increases enzymatic activities as well as the concentration of caffeine. Research indicates that about 15% of chlorophyll degradation occurs during withering. It is also reported that during withering lipids break down into simpler compounds and catechin levels decrease. Improper withering can cause adverse effects on subsequent manufacturing operations, such as maceration, rolling, fermentation, drying, and tea storage. Conclusion: Freshly harvested leaves are conditioned physically and chemically for subsequent processing. There is no specified withering duration, but 14-18 h is generally considered the optimum period. Proper and even withering of tea shoots greatly depends on the standards of plucking, handling, transportation, environmental conditions, time, and temperature. Thus, to ensure consumption of high quality tea, the withering step must be monitored carefully.

Analysis of mixing ratio of lacquer and glue for lacquer drying in low relative humidity environment (상온저습 환경에서의 옻의 건조를 위한 옻과 교의 배합 분석 연구)

  • Kim, Eun-Kyung;Jeong, Se-Ri;Yu, Jae-Eun
    • 보존과학연구
    • /
    • s.32
    • /
    • pp.37-52
    • /
    • 2011
  • This study investigates the hardening characteristics of the mixture lacquer and glue at room temperature. Diverse samples were made from manufacturing of glue to the adding ratio in sap of the lacquer tree. After the examination of moisture content of samples, it has been seen that there is no relation with glue's kinds or adding ratio, but only with contain level of moisture. The samples made with film shape in order to examine the drying time. Samples with isinglass needed for over three days and had smooth surface. However, samples mixed with animal glue dried within a day and had ripples on the surface because of fast drying rate. In addition, the samples with isinglass had slow change of colour in early step of drying and no colour difference after completely drying although it had significant changes to black oxide as soon as contact with air. In structural analysis with FT-IR showed that the carbonyl bond increased in the samples of mixed with glue, compared to raw lacquer and treated lacquer.

  • PDF

Development of Crop Growth Model under Different Soil Moisture Status

  • Goto, Keita;Yabuta, Shin;Sakagami, Jun-Ichi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2019.09a
    • /
    • pp.19-19
    • /
    • 2019
  • It is necessary to maintain stable crop productions under the unsuitable environments, because the drought and flood may be frequently caused by the global warming. Therefore, it is agent to improve the crop growth model corresponded to soil moisture status. Chili pepper (Capsicum annuum) is one of the useful crop in Asia, and then it is affected by change of precipitation in consequence drought and flood occur however crop model to evaluate water stresses on chili pepper is not enough yet. In this study, development of crop model under different soil moisture status was attempted. The experiment was conducted on the slope fields in the greenhouse. The water level was kept at 20cm above the bottom of the container. Habanero (C. chinense) was used as material for crop model. Sap bleeding rate, SPAD value, chlorophyll content, stomatal conductance, leaf water potential, plant height, leaf area and shoot dry weight were measured at 10 days after treatment (DAT) and 13 DAT. Moreover, temperature and RH in the greenhouse, soil volume water contents (VWC) and soil water potential were measured. As a result, VWC showed 4.0% at the driest plot and 31.4% at the wettest plot at 13 DAT. The growth model was calculated using WVC and the growth analysis parameters. It was considered available, because its coefficient of determination showed 0.84 and there are significant relationship based on plants physiology among the parameters and the changes over time. Furthermore, we analyzed the important factors for higher accuracy prediction using multiple regression analysis.

  • PDF

Low Temperature Inducible Acid Tolerance Response in virulent Salmonella enterica serovar Typhimurium (병원성 Salmonella enterica serovar Typhimurium의 저온 유도성 산 내성 반응)

  • Song, Sang-Sun;Lee, Sun;Lee, Mi-Kyoung;Lim, Sung-Young;Cho, Min-Ho;Park, Young-Keun;Park, Kyeong-Ryang;Lee, In-Soo
    • Korean Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.228-233
    • /
    • 2001
  • The acid tolerance response (ATR) of log-phase Salmouella enterica seroyar Typhimurium is induced by acid adaptation below pH4.5 and will protect cells against more severe acid. Two distinctive ATR systems in thisorganism are a log-phase and stationary-phase ATR in which acid adaptations trigger the synthesis of acid shockproteins (ASPs). We found that log-phase ATR system was strongly affected by environmental factor, low tem-perature, $25^{\circ}C$. Exposure to low temperature and mild acid has been shown to increase acid survival dra-matically, and this survival rate was showed higher than $37^{\circ}C$. Especially unadapted cells at $25^{\circ}C$ presented tenthousand folds survival increasing when compared with cells at $37^{\circ}C$. The degree of acid tolerance of rpoSwhich is blown to be required for acid tolerance more increase than $37^{\circ}C$. Even though AIR pattern of rpoSbetween unadapted and adapted was showed similar at pH 3.1, rpoS-dependent ATR system also has beendetected in low temperature because rpoSAp prevents sustained acid survival at $25^{\circ}C$. Therefore the resultssuggest low temperature ATR system requires rpoS-dependent and -independent both. To investigate the basisfor low temperature related ATR system, gene that was participated for low temperature acid tolerance (lat) wasscreened in virulent S. enterica serovar Typhimurium UKl Using the technique of P22- MudJ (Km, lacZ)-directed lacZ operon fusion, LF452 latA‥‥MudJ was isolated. The latA‥‥MudJ of S. enterica Typhimurium pre-vented low temperature acid tolerance response. Therefore latA is considered one of the important genes for acidadaptation.

  • PDF

Study on Properties of Natural Adhesives with Lacquer for Ceramic Conservation (옻을 활용한 토기 복원용 천연 접착재료의 특성 연구)

  • Jeong, Se Ri;Kim, Eun Kyung;Yu, Jae Eun
    • Journal of Adhesion and Interface
    • /
    • v.12 no.4
    • /
    • pp.111-116
    • /
    • 2011
  • The characteristics of natural resin, sap of the lacquer tree were examined as an adhesive for the ceramic conservation since it has such outstanding properties like corrosion resistance against acid and alkali, heat-resistance, waterproof, antiseptic and protection against insects. In order to utilize raw lacquer as an adhesive not under the hardening conditions of lacquer like high humidity (RH 75 to 85%) and high temperature (120 to $170^{\circ}C$), but under normal condition, isinglass and animal glue were added to raw lacquer at certain ratio. In addition, the viscosity and the drying time were measured and their possibilities of application were also investigated through measurement of tensile and adhesive strength. As a result of experiment, it was possible to dry at room temperature and RH $50{\pm}5%$ to mix with raw lacquer and glue, and the drying time of sample with animal glue was faster than that of isinglass. Furthermore, the adhesion of sample with glue was increased more than raw lacquer. It seems to be possible to use the environmental friendly traditional adhesive for the ceramic conservation and restoration, if there are studies or examinations of safety of applications on objects and weathering resistance.