Browse > Article
http://dx.doi.org/10.5656/KSAE.2021.09.0.034

Effects of Temperature on the Development and Reproduction of Four Species of Aphids (Hemiptera: Aphididae) Damaging Cereal Crops  

Ahn, Jeong Joon (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, RDA)
Choi, Kyung San (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, RDA)
Seo, Bo Yoon (Crop Protection Division, National Academy of Agricultural Sciences, Rural Development Administration)
Jung, Jin Kyo (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration)
Publication Information
Korean journal of applied entomology / v.60, no.4, 2021 , pp. 339-355 More about this Journal
Abstract
Aphids can damage plants directly by absorbing their phloem sap and indirectly by transferring plant viruses and causing sooty mold. We compared the thermal effect on the development, survivorship, and reproduction of four cereal crop-damaging aphid species, Rhopalosiphum padi, Aulacorthum solani, Aphis craccivora, and Acyrthosiphon pisum using a life table analysis method. We investigated the stage-specific development period, survivorship, adult longevity, and fecundity of the above mentioned four aphids at 10, 15, 20, 25, and 30℃, respectively, and analyzed their life table parameters using the age-stage, two-sex life table analysis. A. solani nymphs could not complete their development to adulthood at 30℃. The intrinsic increase rate of R. padi was the highest at all tested temperatures except for that at 15℃ (0.12, 0.34, 0.47, and 0.32 at 10, 20, 25, and 30℃, respectively), and that of A. pisum displayed negative values at 30℃ (-0.04). It is speculated that R. padi would be a dominant species under high temperature conditions and A. solani is a highly adaptive species at low temperatures through the comparative analysis of the life table parameters of four aphid species damaging to cereal crops.
Keywords
Aphid; Life table Analysis; Temperature; Climate Change;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Berberet, R.C., Giles, K.L., Zarrabi, A.A., Payton, M.E., 2009. Development, reproduction and within-plant infestation patterns of Aphis craccivora (Homoptera: Aphididae) on Alfalfa. Environ. Entomol. 38, 1765-1771.   DOI
2 Dixon, A.F.G., Honek, A., Keil, P., Kotela, M.A.A., Sizling, A.L., Jarosik, V., 2009. Relationship between the minimum and maximum temperature thresholds for development in insects. Funct. Ecol. 23, 257-264.   DOI
3 Ahn, J.J., Cho, J.R., Kim, J-H., Seo, B.Y., 2020. Thermal effects on the population parameters and growth of Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae). Insects 11, 481.   DOI
4 Ahn, J.J., Choi, K.S., Koh, S., 2021. Population parameters and growth of Riptortus pedestris (Fabricius) (Hemiptera: Alydidae) under elevated CO2 concentrations. Entomol. Res. 51, 12-23.   DOI
5 Akca, I., Ayvaz, T., Yazici, E., Smith, C.L., Chi, H., 2015. Demography and population projection of Aphis fabae (Hemiptera: Aphididae): with additional comments on life table research criteria. J. Econ. Entomol. 108, 1466-1478.   DOI
6 Borer, E.T., Adams, V.T., Engler, G.A., Adams, A.L., Schumann, C.B., Seabloom, E.W., 2009. Aphid fecundity and grassland invasion: invader life history is the key. Ecol. Appl. 19, 1187-1196.   DOI
7 Auad, A.M., Alves, S.O., Carvalho, C.A., Silva, D.M., Resende, T.T., Verissimo, B.A., 2009. The impact of temperature on biological aspects and life table of Rhopalosiphum padi L. (Homoptera: Aphididae) fed with signal grass. Fla. Entomol. 92, 569-577.   DOI
8 Park, C-G., Choi, B-R., Cho, J.R., Kim, J-H., Ahn, J.J., 2017. Thermal effects on the development, fecundity and life table parameters of Rhopalosiphum padi (Linnaeus) (Hemiptera: Aphididae) on barley. J. Asia-Pacific Entomol. 20, 767-775.   DOI
9 Birch, L.C., 1948. The intrinsic rate of natural increase of an insect population. J. Anim. Ecol., 17, 15-26.   DOI
10 Blackman, R.I., Eastop, V.F., 2000. Aphids on the World's Crops: An Identification and information Guide. John Wiley. New York, NY, USA.
11 Borowiak-Sobkowiak, B., Durak, R., Wikaniec, B., 2017. Morphology, biology and behavioral aspects of Aphis craccivora (Hemiptera: Aphididae) on Robinia pseudoacacia. Acta Sci. Pol. Hortorum Cultus. 16, 39-49.   DOI
12 Chi, H., Liu, H., 1985. Two new methods for the study of insect population ecology. B. I. Zool. Acad. Sinica. 24, 225-240.
13 Brault, V., Tanguy, S., Reinbold, C., Le Trionnaire, G., Arneodo, J., Jaubert-Possamai, S., Guernec, G., Tagu, D., 2009. Transcriptomic analysis of intestinal genes following acquisition of pea enation mosaic virus by the pea aphid Acyrthosiphon pisum. J. Gen. Virol. 91, 802-808.   DOI
14 Carry, J.R., 1993. Applied demography for biologists with special emphasis on insects. Oxford University Press, Inc., New York, NY, USA.
15 Chi, H., 1988. Life-table analysis incorporating both sexes and variable development rates among individuals. Environ. Entomol. 17, 26-34.   DOI
16 Chi, H., Su, H.Y., 2006. Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environ. Entomol. 35, 10-21.   DOI
17 Clarke, R.G., Bath, J.E., 1973. Transmission of Pea Enation Mosaic Virus by the Pea Aphid, Acyrthosiphon pisum, following Virus Acquisition by Injection1, 2. Ann. Entomol. Soc. Am. 66, 603-607.   DOI
18 Morgan, D., 2000. Population dynamics of the bird cherry-oat aphid, Rhopalosiphum padi (L.), during the autumn and winter: a modelling approach. Agr. Forest Entomol. 2, 297-304.   DOI
19 Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P., Mackauer, M., 1974. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11, 431-438.   DOI
20 Bale, J.S., Masters, G.J., Hodkinson, I.D., Awmack, C., Bezemer, T.M., Brown, V.K., Butterfield, Buse, A., Coulson, J.C., Farrar, J., Good, J.G., Harrington, R., Hartley, S., Jones, T.H., Lindroth, R.L., Press, M.C., Symrnioudis, I., Watt, A.D., Whittaker, J.B., 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 1-16.   DOI
21 Chen, G.M., Chi, H., Wang, R.C., Wang, Y.P., Xu, Y.Y., Li, X.D., Yin, P., Zheng, F-Q., 2018. Demography and uncertainty of population growth of Conogethes punctiferalis (Lepidoptera: Crambidae) reared on five host plants with discussion on some life history statistics. J. Econ. Entomol., 111, 2143-2152.   DOI
22 Chi, H., 2020a. TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. http://140.120.197.173/Ecology/Download/Twosex-MSChart.exe-B100000.rar.
23 Chi, H., You, M., Atlihan, R., Smith, C.L., Kavousi, A., Ozgokce, M.S., Guncan, A., Tuan, S-J., Fu, J-W., Xu, Y-Y., Zheng, F-Q., Ye, B-H., Chu, D., Yu, Y., Gharekhani, G., Saska, P., Gotoh, T., Schneider, M.I., Bussaman, P., Gokce, A., Liu T-X., 2020. Age-stage, two-sex life table: an introduction to theory, data analysis, and application. Entomol. Gen. 40, 103-124.   DOI
24 Descamps, L.R., Chopa, C.S., 2011. Population growth of Rhopalosiphum padi L. (Homoptera: Aphididae) on different cereal crops from the semiarid pampas of Argentina under laboratory conditions. Chilean JAR 71, 390-394.
25 Favert C., 2021. Aphid species file. Version 5.0/5.0.. http://Aphid.Speicesfile.org.
26 Chang, Y-D., Youn, Y-N., 1983. A study on the biology of primary parasites of the cow-pea aphid, Aphis craccivora Koch (Aphididae, Homo.) and its hyperparasites. Korean J. Plant Prot. 22, 237-243.
27 Hodge, S., Powell, G., 2010. Conditional Facilitation of an Aphid Vector, Acyrthosiphon pisum, by the Plant Pathogen, Pea Enation Mosaic Virus. J. Insect Sci. 10, 1-14.   DOI
28 Tuan, S.J., Lee, C.C., Chi, H., 2014a. Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Manag. Sci. 70, 805-813.   DOI
29 Cuperus, G., Radcliffe, E., Barnes, D., Marten, G., 1982. Economic injury levels and economic thresholds for pea aphid, Acyrthosiphon pisum (Harris), on alfalfa. Crop Prot. 1, 453-463.   DOI
30 Deutsch, C.A., Tewksbury, J.J., Tigchelaar, M., Battisti, D.S., Merrill, S.C., Huey, R.B., Naylor, R.L., 2018. Increase in crop losses to insect pests in a warming climate. Science 361, 916-919.   DOI
31 Garcia-Robledo, C., Kuprewicz, E.K., Staines, C.L., Erwin, T.L., Kress, W.J., 2016. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. PNAS 113, 680-685.   DOI
32 Halsch, C.A., Shapiro, A.M., Fordyce, J.A., Nice, C.C., Thorne, J.H., Waetjen, D.P., Forister, M.L., 2021. Insects and recent climate change. PNAS 118, e2002543117.   DOI
33 Hwang, C.Y., Uhm, K.B., Choi, K.M., 1981. Seasonal occurrence of aphids (Aulacorthum solani K., Aphis glycines M.) and effects of some insecticides on aphids with infurrow treatment in soybean. Korean J. Plant Prot. 20, 112-116.
34 Chi, H. 2020b. TIMING-MSChart: a computer program for the population projection based on age-stage, two-sex life table. http://140.120.197.173/Ecology/Download/Timing-MSChart.rar.
35 Govindan, B.N., Hutchinson, W.D., 2020. Influence of temperature on age-stage, two-sex life tables for a Minnesota-acclimated population of the brown marmorated stink bug (Halyomorpha halys). Insects 11, 108.   DOI
36 Henderson, P.A., Southwood, T.R.E., 2016. Ecological Methods. West Susseex, John Wiley & Sons, UK.
37 Efron, B., Tibshirani, R.J., 1993. An Introduction to the Bootstrap. Chapman & Hall, New York, NY, USA.
38 Huang, K.Y.B., Atlihan, R., Gokce, A., Huang, J.Y.B., Chi, H., 2016. Demographic analysis of sex ratio on population growth of Bactrocera dorsalis (Diptera: Tephritidae) with discussion of control efficacy using male annihilation. J. Econ. Entomol. 109, 2249-2258.   DOI
39 Johansson, F., Orizaola, G., Nilsson-Ortman, V., 2020. Temperature insects with narrow seasonal activity periods can be as vulnerable to climate change as tropical insect species. Scientific Reports 10, 8822.   DOI
40 Lee, J.S., Yoo, M., Jung, J.K., Bilyeu, K.D., Lee, J-D., 2015. Detection of novel QTLs for foxglove aphid resistance in soybean. Theor. Appl. Genet. 128, 1481-1488.   DOI
41 Moran, N.A., 1992. The evolution of aphid life cycles. Annu. Rev. Entomol. 37, 321-348.   DOI
42 Huey, R.B., Kingsolver, J.G., 1989. Evolution of thermal sensitivity of ectotherm performance. TREE 4, 131-135.
43 Harris, R.M.B., Beaumont, L.J., Vance, T.R., Tozer, C.R., Remenyi, T., Perkins-Kirkpatrick, S.E., Mitchell, P.J., Nicotra, A.B., Mc-Gregor, S., Andrew, N.R., Letnic, M., Kearney, M.R., Wernberg, T., Hutley, L.B., Chambers, L.E., Fletcher, M-S., Keatley, M.R., Woodward, C.A., Williamson, G., Duke, N.C., Bowman, D.M.J.S., 2018. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Chang. 8, 579-587.   DOI
44 Honek, A., 1999. Constraints on thermal requirements for insect development. Entomol. Sci. 2, 615-621.
45 Huang, Y.B., Chi, H., 2012. Assessing the application of the jackknife and bootstrap techniques to the estimation of the variability of the net reproductive rate and gross reproductive rate: a case study in Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae). J. Agri. Fore. 61, 37-45.
46 Takada, H., Ono, T., Torikura, H., Enokiya, T., 2006. Geographic variation in esterase allozymes of Aulacorthum solani (Homoptera: Aphididae) in Japan, in relation to its outbreaks on soybean. Appl. Entomol. Zool. 41, 595-605.   DOI
47 Ahn, J.J., Choi, K.S., Koh, S., 2019. Effects of temperature on the development, fecundity, and life table parameters of Riptortus pedestris (Hemiptera: Alydidae). Appl. Entomol. Zool. 54, 63-74.   DOI
48 Park, J.J., Kwon, S.H., Kim, T.O., Oh, S.O., Kim, D.-S., 2016. Temperature-dependent development and fecundity of Rhopalosiphum padi (L.) (Hemiptera: Aphididae) on corns. Korean J. Appl. Entomol. 55, 149-160.   DOI
49 Samayoa, A.C., Choi, K.S., Wang, Y.-S., Hwang, S.-Y., Huang, Y.-B., Ahn, J.J., 2018. Thermal effects on the development of Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) and model validation in Taiwan. Phytoparasitica 46, 365-376.   DOI
50 Shi, M.Z., Li, J.Y., Ding, B., Fu, J.W., Zheng, L.Z., Chi, H., 2019. Indirect effect of elevated CO2 on population parameters and growth of Agasicles hygrophila (Coleoptera: Chrysomelidae), a biocontrol agent of Alligatorweed (Amaranthaceae). J. Econ. Entomol, 112, 1120-1129.   DOI
51 Tuan, S.J., Lee, C.C., Chi, H. 2014b. Erratum: population and damage rojection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two- sex life table. Pest Manag. Sci. 70, 1936.   DOI
52 Kim, D-S., Ahn, J.J., Lee, J-H., 2017. A review for non-linear models describing temperature-dependent development of insect populations: characteristics and developmental process of models. Korean J. Appl. Entomol. 56, 1-18.   DOI
53 Jactel, H., Koricheva, J., Castagneyrol, B., 2019. Responses of forest insect pests to climate change: Not so simple. Curr. Opin. Insect Sci. 35, 103-108.   DOI
54 Seo, B.Y., Kim, E.Y., Ahn, J.J., Kim, Y., Kang, S., Jung, J.K., 2020. Development, reproduction and life table parameters of the foxglove aphid, Aulacorthum solani Kaltenback (Hemiptera: Aphididae), on soybean at constant temperatures. Insects 11, 296.   DOI
55 Andrewartha, G.G., Birch, L.C., 1954. The Distribution and Abundance of Animals. University of Chicago Press, Chicago, USA.
56 Asin, L., Pons, X., 2001. Effect of high temperature on the growth and reproduction of corn aphids (Homoptera: Aphididae) and implications for their populations dynamics on the northeastern Iberian peninsula. Environ. Entomol. 30, 1127-1134.   DOI
57 Agunbiade, T.A., Sun, W., Coates, B.S., Djouaka, R., Tamo, M., Ba, M.N., Binso-Dabire, C., Baoua, I., Olds, B.P., Pittendrigh, B.R., 2013. Development of reference transcriptomes for the major field insect pests of cowpea: A toolbox for insect pest management approaches in West Africa. PLos ONE 8, e79929.   DOI
58 Lehmann, P., Ammunet, T., Barton, M., Battisti, A., Eigenbrode, S.D., Jepsen, J.U., Kalinkat, G., Neuvonen, S., Niemela, P., Terblanche, J.S., Okland, B., Bjorkman, C., 2020. Complex responses of global insect pests to climate warming. Front. Ecol. Environ. 18, 141-150.   DOI
59 Jandricic, S.E., Wraight, S.P., Bennett, K.C., Sanderson, J.P., 2010. Developmental times and life table statistics of Aulacorthum solani (Hemiptera: aphididae) at six constant temperatures, with recommendations on the application of temperature-dependent development models. Environ. Entomol. 39, 1631-1642.   DOI
60 Kim, D-H., Lee, G-H., Park, J-W., Hwang, C-Y., 1991. Occurrence aspects and ecological characteristics of foxglove aphid, Aulacorthum solani, Kaltenbach (Homoptera: Aphididae) in soybean. Res. Rept. RDA. 33, 28-32.
61 Laamari, M., Khelfa, L., Coeur d'Acier, A., 2008. Resistance source to cowpea aphid (Aphis craccivora Koch) in broad bean (Vicia faba L.) Algerian landrace collection. Afr. J. Biotechnol. 7, 2486-2490.
62 Lactin, D.J., Holliday, N.J., Johnson, D.L., Craigen, R., 1995. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 24, 68-75.   DOI
63 Sharpe, P.J., DeMichele, D.W., 1977. Reaction kinetics of poikilo therm development. J. Theor. Biol. 64, 649-670.   DOI
64 Wagner, D.L., Grames, E.M., Forister, M.L., Berenbaum, M.R., Stopak, D., 2021. Insect decline in the Anthropocene: death by a thousand cuts. PNAS 118, e2023989118.   DOI
65 Logan, J.A., Wollkind, D.J., Hoyt, S.C., Tanigoshi, L.K., 1976. An analytic model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol. 5, 1133-1140.   DOI
66 Price, P.W., Denno, R.F., Eubanks, M.D., Finke, D.L., Kaplan, I., 2011. Insect Ecology: Behavior, Populations, and Communities. Cambridge University Press, Cambridge, UK.
67 Sainsbury, F., Canizares, M.C., Lomonossoff, G.P., 2010. Cowpea mosaic virus: the plant virus-based biotechnology workhorse. Annu. Rev. Phytopathol. 48, 437-455.   DOI
68 Schoolfield, R., Sharpe, P., Magnuson, C., 1981. Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theor. Biol. 88, 719-731.   DOI
69 Skendzic, S., Zovko, M., Zivkovic, I.P., Lesic, V., Lemic, D., 2021. The impact of climate change on agricultural insect pests. Insects 12, 440   DOI
70 Schwinghamer, M.W., Nicholas, A.H., Schilg, M.A., 2009. Three aphid vectors of faba bean (Vicia faba) viruses in northern New SouthWales and occurrence of Acyrthosiphon pisum-transmitted isolates of Soybean dwarf virus. Australas. Plant Pathol. 38, 262-269.   DOI
71 Southwood, T.R.E., 1978. Ecological Methods: With Particular Reference to the Study of Insect Populations (2nd ed.). Chapman and Hall, London, UK.
72 Taheri, S., Razmjou, J., Rastegari, N., 2010. Fecundity and development rate of the bird cherry-oat aphid, Rhopalosiphum padi (L) (Hom.: Aphididae) on six wheat cultivars. Plant Prot. Sci. 46, 72-78.   DOI
73 Takemoto, H., Uefune, M., Ozawa, R., Arimura, G-I., Takabayashi, J., 2013. Previous infestation of pea aphids Acyrthosiphon pisumon broad bean plants resulted in the increased performance of conspecific nymphs on the plants. J. Plant Interact. 8, 370-374.   DOI
74 Tang, Q.L., Ma, K.S., Chi, H., Hou, Y. M., Gao, X.W., 2019. Transgenerational hormetic effects of sublethal dose of flupyradifurone on the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). PLoS One, 14, e0208058.   DOI
75 Wagner, D.L., 2020. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457-480.   DOI
76 Kuo, M-H., Chen, C-Y., 2004. Development and population parameters of the cowpea aphid, Aphid craccivora Koch (Hemoptera: Aphididae), at various constant temperatures. Formosan Entomol. 24, 305-315.