• Title/Summary/Keyword: sand permeability

Search Result 249, Processing Time 0.022 seconds

Physicochemical Effects of Bottom Ash on the Turfgrass Growth Media of Sandy Topsoil in Golf Course (석탄바닥재 처리가 골프장 잔디식재 사질토양의 이화학성에 미치는 영향)

  • Lee, Ju-Young;Choi, Hee-Youl;Yang, Jae-E
    • Asian Journal of Turfgrass Science
    • /
    • v.24 no.2
    • /
    • pp.199-204
    • /
    • 2010
  • Much of the coal ash by thermal power plant has gradually been increased, however researches on the recycling of bottom ash has not been investigated enough so far. In this research, the lysimeter test was conducted to find out the possibilities of bottom ash as soil amendment to improve the physiochemical properties of sandy topsoil of turfgrass in golf course. The turfgrass growth test and leaching test were conducted on the lysimeter. The lysimeter columns were manufactured with various topsoil mixing ratios of 0, 10, 20, 30, and 50% of bottom ash with sand. As a result of leachate analysis through the lysimeter column, the higher ratios of bottom ash mixed affect significantly on water holding capacity of topsoil sand media with decreasing of the percolation rate. The results of leachate analysis in every three days interval, the pH of leachate increased with the bottom ash ratios, but the volume of $NO_3$-N, $NH_4$-N and K decreased significantly. However, the level of EC of leachate had constantly maintained. These results indicate that the application of bottom ash may improve turfgrass growth with water holding capability and fertility of sandy topsoil. However, the negative effects of the bottom ash also evaluated by reducing water permeability and solubility of $PO_4$-P by adsorption into soil particles. The results indicates that the reasonable mixing ratio of the bottom ash as soil amendment should be less than 20% (v/v) with sand which has a low water-holding and fertility in golf course topsoil layers.

Proper Light Intensity, Potting Media and Fertilization Level for Potted Hepatica asiatica Nakai (노루귀의 분화재배를 위한 적정 광도, 분용토 및 시비수준)

  • Jeong, Kyeong Jin;Jeon, Hyeon Sik;Chon, Young Shin;Yun, Jae Gill
    • Horticultural Science & Technology
    • /
    • v.33 no.1
    • /
    • pp.24-30
    • /
    • 2015
  • This study was conducted to select proper light intensity, pot media, and fertilization level for potted Hepatica asiatica Nakai native to Korea. The plants were grown under various light intensities (shading rate, 52, 82, 90, 97%) imposed by shading net. Plants grown with 52% shading showed a low survival rate (65%). Survival rate increased as shading increased, with over 80% survival in shading above 90%. Growth indexes such as fresh weight and leaf number did not show any significant difference between shading treatments. Plants grown in a soil mixture of decomposed granite:fertilizer-amended media:Kanumatsuchi (60:10:30, v/v/v) or river sand:fertilizer-amended media:bark (50:20:30) showed over 85% survival. However, plants grown in a soil mixture of river sand:fertilizer-amended media:Kanumatsuchi (50:30:20) or upland:river sand (40:60) showed very low survival, below 60%. Leaf number and plant height were the highest in a soil mixture of decomposed granite:fertilizer-amended media:Kanumatsuchi (60:10:30) as well. To select a proper fertilization level for H. asiatica, hyponex solution diluted 1,000- or 2,000-fold were applied weekly or biweekly. The survival rate was lowest at weekly application with 1,000-fold diluted solution, and no significant difference was observed between other treatments. In conclusion, H. asiatica exhibits preferences for very low light intensity and soil with air permeability, and is adaptable to a broad range of fertilization levels.

A Study on Clogging during Installation of Compaction Pile (다짐말뚝 시공 시 공극 막힘 현상 분석 연구)

  • Choi, Jeong Ho;Park, Seong Jin;Choo, Yun Wook;Kim, Il Gon;Kim, Byeong Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.4
    • /
    • pp.33-45
    • /
    • 2022
  • A series of model tests were performed in this study to demonstrate the clogging mechanism created during the installation of a compaction pile to improve soft ground. The application of an air-jet to extrude sand or aggregates from a casing during the installation of a compaction pile imposes a remarkably high-pressure difference between the composite soil layers of clay and sand (or aggregates), resulting in severe clogging. Therefore, a one-dimensional testing system was developed to simulate composite soil layers consisting of clay and sand (or aggregates) and to apply a high-pressure differential at both boundaries, thus replicating the extrusion process used in compaction pile installation. Herein, the performance of two construction materials for compaction piles of crushed stone and grading-controlled aggregates was compared. A series of one-dimensional model tests were performed under multiple pressure settings, with clogging depth and permeability measured in each case. Results indicate that, blinding clogging mechanisms and blocking defined by previous studies were observed for crushed stone, and a new mechanism of "infiltration" was revealed and defined. Whereas, the controlled aggregates performed excellently against clogging because only blinding was observed.

Laboratorial Study for Mechanical Prosperities of Intermediate Soils (중간토의 역학적 특성에 관한 실험적 연구)

  • 박중배;전몽각
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.113-122
    • /
    • 1995
  • The purposes of this study are to investigate the mechanical prospeities of the inter mediate soils through consolidation tests and triaxial compression shear tests. The intermediate soils used in this study are artificial soils which are composed of sea clay, sand and it's crushed component. The relationship between plastic index and mechanical prosperties (permeability and compressibility) is investigated through series of consoli dation tests. Strain hardening phenomenon under shearing is explored based on several overconsideration ratios and strain rates in undrained shear tests. To make a comparative study difference of drain condition and strain rate, drain shear tests are performed with overconsolidation ratio.

  • PDF

Study on the Behavior of Sabkha Deposit during Dynamic Compaction (사브카 지반 동다짐 공법 적용 시 지반거동 분석)

  • Moon, Joon-Shik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.103-111
    • /
    • 2017
  • Saudi Arabia coastal area is highly valuable construction as a flat area covered by sabkha deposit. However, sabkha deposit has some geotechnical problems because of high groundwater level, high salt contents in groundwater, loose density, and possibility of collapsible settlement due to presence of crystals vulnerable to moisture, and ground improvement is needed to improve the bearing capacity. In this study, the characteristics of the sabkha soils in the coastal area of Saudi Arabia were analyzed and the applicability of dynamic compaction method was evaluated. Parametric study was conducted to analyze the behavior of sabkha deposit during dynamic compaction. The appropriateness of the proposed analytical solutions to estimate the depth of improvement was evaluated, and the troubles and notes in applying dynamic compaction in sabkha deposit were discussed.

Soil-Vapor Survey on Soil-Remediation by EMPLEX Collector (EMPLUX Collector에 의한 토양 오염 가스 조사)

  • Kim, Jung-Sung
    • Journal of Environmental Science International
    • /
    • v.17 no.1
    • /
    • pp.119-128
    • /
    • 2008
  • Laboratory analytical results of 22 sets of hydrophobic adsorbent coils containing surface soil-vapor and two soil samples collected by conventional intrusive method from each boring location at two active dry cleaning facilities in the State of Illinois, U.S.A, were presented to evaluate the performance of soil-vapor survey. The most critical factor to determine the effectiveness of soil-vapor survey is the distance from the soil-vapor sampling device to the actual contamination, which is a function of soil porosity, permeability, primary lithology, and other geological and hydrogeological site-specific parameters. Also this factor can be affected by the history of contaminant-generating operations. The laboratory analytical results in this study showed longer dry cleaning operation history (i.e., 50 years) and presence of fine sand at the beneath Site B allow the contaminants to migrate farther and deeper over a fixed time compared to Site A(i.e., 35 years and silty clay) so that the soil-vapor survey is not likely the most effective environmental site investigation method alone for Site B. However, for Site A, the soil-vapor survey successfully screened the site to identify the location reporting the highest soil concentration of chlorinated solvents.

A Study on the Applicability of Copper Slag as Drainage Material (산업폐기물인 동슬래그의 배수재로서의 활용에 관한 연구)

  • Chun, Byung-Sik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.4
    • /
    • pp.65-72
    • /
    • 2004
  • Within a country, owing to the restriction of aggregate which have been supplied to construction sites, applicability of byproducts such as the copper slag is expected to be more reasonable. In this study, on the basis of characteristics, grain distribution and environmental stability of copper slag, its engineering application was estimated as the vertical and horizontal drainage material. As a results of laboratory tests, it was shown that the permeability of the copper slag was similar to that of sands under vertical drainage condition. In addition, the copper slag showed higher critical hydraulic gradient than that of sand under upward vertical flow state. The copper slag has potential safety against piping and it that the copper slag is suitable for drainage and filter material.

  • PDF

Durability Characteristics of Controlled Low Strength Material(Flowable Fill) with High Volume Fly Ash Content (다량의 플라이 애쉬를 사용한 저강도 고유동 충전재의 내구특성에 관한 연구)

  • 원종필;신유길
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.1
    • /
    • pp.113-125
    • /
    • 2000
  • The purpose of this study was to examine the durability characteristics of controlled low strength material(flowable fill) with high volume fly ash content. Flowable fill refer to self-compacted, cementitious material used primarily as a backfill in lieu of compacted fill. The two primary advantages of flowable fill over traditional methods are its ease of placement and the elimination of settlement. Therefore, in difficult compaction areas or areas where settlement is a concern, flowable fill should be considered. The fly ash used in this study met the requirements of KS L 5405 and ASTM C 618 for Class F material. The mix proportions used for flowable fill are selected to obtain low-strength materials in the 10 to 15kgf/$\textrm{cm}^2$ range. The optimized flowable fill was consisted of 60kg f/$\textrm{m}^3$ cement content, 280kgf/$\textrm{m}^3$ fly ash content, 1400kgf/$\textrm{m}^3$ sand content, and 320kgf/$\textrm{m}^3$ water content. Subsequently, durability tests including permeability, warm water immersion, repeated wetting & drying, freezing & thawing for high volume fly ash-flowable fill are conducted. The results indicated that flowable fill has acceptable durability characteristics.

A Study on Geotechnical Stability of the Sludge Mixed Soil (슬러지가 혼합된 지반의 공학적 안정 특성에 관한 연구)

  • Hwang, Sung-Pil;Jeoung, Jae-Hyeung
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.1
    • /
    • pp.55-60
    • /
    • 2017
  • The dyeing sludge can be weakened by inflow of rainfall or absorption of moisture after it is buried in a waste landfill. This study tested the dyeing sludge and earth/sand mixture to check the problem when the dehydrated dyeing sludge is buried in a waste landfill. When the dyeing sludge was left idle with high water content inside a landfill with poor draining for a long period, the water permeability decreased to around 3/100 level and the compressibility increased by 1.4 times compared to the dyeing sludge at a dyeing factory. The study result indicated that it was important to reduce the water content inside the landfill for stability. Also, the facilities to secure the drainage path and eliminate leachate were needed.

Unsaturated shear strength characteristics of Nak-dong River silty-sand (낙동강 실트질 모래의 불포화 전단강도특성)

  • Cha, Bong-Geun;Kim, Young-Su;Park, Sung-Sik;Shin, Ji-Seop
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.53-60
    • /
    • 2010
  • The natural soils are classified in saturated soils and unsaturated soils according to level of ground water but the research for only saturated soils has been conducted by this time. However, there are many proble.ms which are not solved by using the concept and principle of saturated soils on the natural soils. In fact, it is known that unsaturated soils represent the behavior characteristic unlike completely saturated soils because of the adhesion under the influence of negative pore water pressure, the high angle of friction and the low water permeability by the air entry. So it needs to conduct the various researches on insufficient unsaturated soils. In this paper, unsaturated triaxial compressive tests are conducted in order to do research on shear strength characteristic on sands and silty sands of Nakdong river. As a result of the tests, the cohesion is increased in non-linear type according to the change of the matric suction, but the angle of internal friction is not changed much.

  • PDF