• 제목/요약/키워드: sand concrete

검색결과 790건 처리시간 0.041초

폐주물사를 사용한 콘크리트의 강도특성에 관한 연구 (A study on the Strength Characteristics of Concrete Using Foundry Waste Sand)

  • 최연왕;최재진;김기형;김용직
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.237-240
    • /
    • 1999
  • This study was performed to analyze strength characteristics of concrete using FWS(foundry waste sand), as a way of study for reusing the FWS disused in the foundry as the fine aggregate for concrete. As the experimental results, the slump of concrete showed a decline with the increase of replacement ratio of FWS. The compressive strength of concrete made with FWS 25% replacement river sand showed higher value than that of concrete not containing FWS, but the flexural strength of concrete containing FWS was decreased 21% compared with that of concrete not containing FWS at age of 28days.

  • PDF

부순모래를 사용한 고강도콘크리트의 특성 및 레미콘 B/P 적용에 관한 연구 (A Study on the Remicon B/P Application and Properties of High Strength Concrete using Crushed Sand)

  • 최세진;이성연;이상수
    • 한국건축시공학회지
    • /
    • 제7권1호
    • /
    • pp.57-62
    • /
    • 2007
  • Generally, the strength of concrete depends on factors of materials, mix proportions, compaction, manufacturing methods and curing and so on. And recently, it has increased the using of crushed sand for concrete due to the exhaustion of good natural aggregate. In case of Korea, in 2004, the using ratio of crushed sand occupies about 28% of whole fine aggregate. This is an experimental study to compare and analyze the influence of W/B ratio and replacement ratio of crushed sand on the fluidity and compressive strength of high strength concrete. For this purpose, the mix proportions of concrete according to the W/B (31.5, 27.5, 23.5%) and replacement ratio of crushed sand (0, 20, 40%) was selected. And then air content, slump-flow, a-lot, compressive strength test were performed.

Shear strength behavior of crude oil contaminated sand-concrete interface

  • Mohammadi, Amirhossein;Ebadi, Taghi;Eslami, Abolfazl
    • Geomechanics and Engineering
    • /
    • 제12권2호
    • /
    • pp.211-221
    • /
    • 2017
  • A laboratory investigation into crude oil contaminated sand-concrete interface behavior is performed. The interface tests were carried out through a direct shear apparatus. Pure sand and sand-bentonite mixture with different crude oil contents and three concrete surfaces of different textures (smooth, semi-rough, and rough) were examined. The experimental results showed that the concrete surface texture is an effective factor in soil-concrete interface shear strength. The interface shear strength of the rough concrete surface was found higher than smooth and semi-rough concrete surfaces. In addition to the texture, the normal stress and the crude oil content also play important roles in interface shear strength. Moreover, the friction angle decreases with increasing crude oil content due to increase of oil concentration in soil and it increases with increasing interface roughness.

Fundamental Properties of Mortar and Concrete Using Waste foundry Sand

  • Moon Han-Young;Choi Yun-Wang;Song Yong-Kyu;Jeon Jung-Kyu
    • 콘크리트학회논문집
    • /
    • 제17권1호
    • /
    • pp.141-147
    • /
    • 2005
  • The development of automobile, vessel, rail road, and machine industry leads an increase of foundry production used as their components, which cause a by-product, waste foundry sand (WFS). The amount of the WFS produced in Korea is over 700,000 tons a year, but most WFS has been buried itself and only $5{\~}6\%$ WFS is recycled as construction materials. Therefore, it is necessary for most WFS to research other ways which can be used in a higher value added product. The study on recycling it as a fine aggregate for concrete or green sand has been in progress in America and Japan since 1970s and 1980s respaectively. In this study, two types of WFS were used as a fine aggregate for concrete. Nine types of concrete aimed at the specified strength of 30 MPa were mixed with washed seashore coarse sand in which salt was removed, and WFS and then appropriate mixture proportion of concrete was determined. Moreover, basic properties such as air contents, setting time, bleeding, workability and slump loss of the fresh concrete with WFS were tested and compared with those of the concrete mixed without WFS. In addition, both compressive strength of hardened concrete at each ages and tensile strength of it at the age of 28 days were measured and discussed.

Experimental study on rheology, strength and durability properties of high strength self-compacting concrete

  • Bauchkar, Sunil D.;Chore, H.S.
    • Computers and Concrete
    • /
    • 제22권2호
    • /
    • pp.183-196
    • /
    • 2018
  • The rheological behaviour of high strength self compacting concrete (HS-SCC) studied through an experimental investigation is presented in this paper. The effect of variation in supplementary cementitious materials (SCM) $vis-{\grave{a}}-vis$ four different types of processed crushed sand as fine aggregates is studied. Apart from the ordinary Portland cement (OPC), the SCMs such as fly ash (FA), ground granulated blast furnace slag (GGBS) ultrafine slag (UFS) and micro-silica (MS) are used in different percentages keeping the mix -paste volume and flow of concrete, constant. The combinations of rheology, strength and durability are equally important for selection of mixes in respect of high-rise building constructions. These combinations are referred to as the rheo-strength and rheo-durability which is scientifically linked to performance based rating. The findings show that the fineness of the sands and types of SCM affects the rheo-strength and rheo-durability performance of HS-SCC. The high amount of fines often seen in fine aggregates contributes to the higher yield stress. Further, the mixes with processed sand is found to offer better rheology as compared to that of mixes made using unwashed crushed sand, washed plaster sand, washed fine natural sand. The micro silica and ultra-fine slag conjunction with washed crushed sand can be a good solution for high rise construction in terms of rheo-strength and rheo-durability performance.

샌드플럭스 장치를 활용한 순환모래의 제조 및 품질 평가에 관한 연구 (A Study on the Estimation of Manufacture and Quality of Recycled Sand using Sand Flux System)

  • 임현웅;김재환;이종구;이도현;이상수;송하영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.529-532
    • /
    • 2006
  • In this study, recently it has to be solved urgently the unbalance of demand and supply about the fine aggregate because the sea sand is restricted by exhaustion of river sand and intensification of environmental law. In this background, manufacturing technology which can produce recycled sand from construction and demolition waste concrete mass is developed. However, the existed washing method has the problem which not only impurities but also many other things make poor quality. Therefore, it tries to conform in time necessity, the objective of this study is to develop the Sand Flux system which can product the high-quality recycled sand from wast concrete and high value-added technology of the high-quality recycled sand as basic materials for mortar and concrete. At the same time it will be able to improve the quality of recycled sand products as an experiment of the physical nature and a quality present condition the products of recycled sand from construction waste.

  • PDF

부순모래를 사용한 콘크리트의 특성에 관한 연구 (Study on the Properties of Concrete Using Crushed Sand)

  • 고경택;류금성;한천구;윤기원;이장화
    • 한국건설순환자원학회논문집
    • /
    • 제2권2호
    • /
    • pp.83-92
    • /
    • 2006
  • Recently, interest grew recently on the quality of aggregates following the diminution of primary resources from river and the growing construction demand which exhausted high-quality sand sources around large cities and incited the use of low grade aggregates like shore sand and sea sand that can be supplied in natural state. Especially, the environmental preservation concern and the augmentation of public grievance about the exploitation of sea sand as substitute to river sand are gradually impeding the supply. This situation aggravated by the recent interdiction to extract sea sand which resulted in sand crisis that even led once to the suspension of construction works. The lack of sea sand and river sand increased the exploitation of crushed sand which occupies now nearly 20% of the whole quantity of fine aggregates. And, the use of crushed sand may be expected to grow continuously in the future. This paper described that the properties of crushed sand and the concrete using the crushed sand, the technologies to improve quality of crushed sand and the concrete in order to provide information for the production of high-quality concrete using crushed sand.

  • PDF

Assessment of concrete properties with iron slag as a fine aggregate replacement

  • Noufal, E. Rahmathulla;Kasthurba, A.K.;Sudhakumar, J.;Manju, Unnikrishnan
    • Advances in concrete construction
    • /
    • 제9권6호
    • /
    • pp.589-596
    • /
    • 2020
  • In an effort to find alternate, environment friendly and sustainable building materials, the scope of possible utilization of iron slag (I-sand), generated as a by-product in iron and steel industries, as fine aggregates in reinforced cement concrete (RCC) made with manufactured sand (M-sand) is examined in this manuscript. Systematic investigations of the physical, mechanical, microstructural and durability properties of I-sand in comparison with RCC made with M-sand have been carried out on various mix designs prepared by the partial/full replacement of I-sand in M-sand. The experimental results clearly indicate the possibility of utilizing iron slag for preparing RCC in constructions without compromising on the property of concrete, durability and performance. This provides an alternate possibility for the effective utilization of industrial waste, which is normally disposed by delivering to landfills, in building materials which can reduce the adverse environmental effects caused by indiscriminate sand mining being carried out to meet the growing demands from construction industry and also provide an economically viable alternative by reducing the cost of concrete production.

Fuzzy logic model for the prediction of concrete compressive strength by incorporating green foundry sand

  • Rashid, Khuram;Rashid, Tabasam
    • Computers and Concrete
    • /
    • 제19권6호
    • /
    • pp.617-623
    • /
    • 2017
  • This work is conducted with the aim of using waste material to reserve the natural resources. The objective is accomplished by conducting experimentation and verify by modeling based on fuzzy logic. In experimentation, concrete is casted by using natural/river sand as fine aggregate and termed as control specimen. Natural sand is conserved by replacing it with used foundry sand (UFS) by an amount of 10, 20 and 30% by weight. Fresh and hardened properties of concrete are investigated at different ages. It is observed that compressive strength and modulus of elasticity reduced with the increase in amount of UFS. Furthermore, concrete compressive strength is predicted by using fuzzy logic model and verified at different replacement ratio and age with experimental observations.

부순모래의 품질특성이 콘크리트의 배합인자 및 압축강도에 미치는 영향 (The Influence of the Properties of Crushed Stone Sand on the Mixing Factor and Compressive Strength of Concrete)

  • 홍지훈;염준환;최진만;정용;이성연;여병철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.623-626
    • /
    • 2005
  • This study is aimed for investigating the influence of the properties of crushed stone sand on the mixing factor and compressive strength of concrete. The results of this study are as follows; The influence of Particle Shape and Very Fine Sand(VFS) of crushed stone sand on the mixing factor was higher than Fineness Modulus. The demand water of concrete with crushed stone sand was decreased about $12\~18kg/m^3$with increasing $4\%$ of Particle Shape and increased $8\~15kg/m^3$ with increasing $3\%$ of ratio of Very Fine Sand(VFS).

  • PDF