• Title/Summary/Keyword: sand column

Search Result 227, Processing Time 0.025 seconds

Evaluation of the Removal Properties of Mn(II) by Manganese-Coated Sand (망간사에 의한 망간제거 특성 평가)

  • Yu, Mok-Ryun;Yang, Jae-Kyu;Kim, Mu-Nui;Lee, Seung-Mok;Lee, Nam-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.5
    • /
    • pp.571-576
    • /
    • 2007
  • Manganese-Coated Sand(MCS) prepared with three different methods were applied in the treatment of soluble $Mn^{2+}$ in batch and column experiments. In the bench-scale MCS preparation, the coating efficiency of manganese on the surface of sand increased as the dosage of initial Mn(II) increased. The removed amount of the soluble $Mn^{2+}$ by MCS increased as the solution pH increased, following a typical anionic-type adsorption. The removed amounts of the soluble $Mn^{2+}$ through adsorption was quite similar over the entire pH range, without depending on the contents of Mn on the surface of sand as well as coating methods. When NaClO was used an oxidant, the removed amount of the soluble $Mn^{2+}$ by MCS increased as the concentration of NaClO increased, This trend might be explained by the increased removal efficiency through coating of manganese oxides produced from oxidation of the soluble $Mn^{2+}$ by NaClO on the surface of MCS. From the bench-scale column experiments, the breakthrough of $Mn^{2+}$ occurred after 4,100 bed volume without presence of NaClO while 1.6-times delayed breakthrough of $Mn^{2+}$ was observed in the presence of NaClO. This result also supports that the removal efficiency of the soluble $Mn^{2+}$ could be enhanced by using NaClO.

Transformation Characteristics of Chlorinated Aliphatic Hydrocarbon (CAH) Mixtures in a Two-Stage Column: 1st Chemical Column Packed with Zinc Natural Ore and 2nd Biological Column Stimulated with Propane-Oxidizing Microorganisms (아연 광석과 프로판산화 미생물을 이용한 이단 고정상 반응기에서의 염소계 지방족 탄화수소 혼합물 분해 특성)

  • Son, Bong-han;Kim, Nam-hee;Hong, Kwang-pyo;Yun, Jun-ki;Lee, Chae-young;Kwon, Soo-youl;Kim, Young
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.723-730
    • /
    • 2007
  • This study was conducted to develop a combined method for remediating a Chlorinated Aliphatic Hydrocarbons (CAHs) mixtures-contaminated aquifer. The process is consist of two processes. A chemical process (1st) using natural zinc ores for reducing higher concentrations of CAH mixtures to the level at which biological process is feasible; and A biological process (2nd) using aerobic cometabolism for treating lower concentration of CAH mixtures (less than 1 mg/L). Natural zinc ore showed relatively high transformation capacity, average dehalogenation percentage, and the best economic efficiency in previously our study. To evaluate the feasibility of the process, we operated two columns in series (that is, chemical and biological columns). In the first column filled with natural zinc ore and sand, CAH mixtures were effectively transformed with more than 95% efficiency, the efficiency depends on the Empty Bed Contact Time (EBCT) and the mass of zinc ore packed. Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD) analysis were performed to make sure whether natural zinc ore played an key role in the dechlorination of the CAH mixtures. The characteristics of zinc metal surface changed after exposure to CAHs due to oxidation of $Zn^0$ to $Zn^{2+}$. In the biological column injecting propane, DO and effluent of the chemical column, only 1,1,1-TCA was cometabolically transformed. Consequently, the combined process would be effective to remediate an aquifer contaminated with high concentrations of CAH mixtures.

Characteristics of Sand-Rubber Mixtures under Different Strain Levels: Experimental Observation (변형률에 따른 모래-고무 혼합재의 거동 특성: 실험적 관찰)

  • Lee, Chang-Ho;Byun, Yong-Hoon;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.3
    • /
    • pp.85-94
    • /
    • 2011
  • Mixtures of sand and rubber particles ($D_{sand}/D_{rubber}=1$) are investigated to explore their characteristics under different stain level. Mixtures are prepared with different volumetric sand fractions ($sf=V_{sand}/V_{total}$). Experimental data are gathered from a resonant column, an instrumented oedometer, and a direct shear tests. Results show that sand and rubber differently control the behavior of the whole mixture with strain level. Non-linear degradation of small strain stiffness is observed for the mixtures with $sf{\geq}0.4$, while the mixtures with low sand fraction ($sf{\leq}0.2$) show significantly high elastic threshold strain. Vertical stress-deformation increases dramatically when the rubber particle works as a member of force chain. The strength of the mixtures increases as the content of rubber particle decreases, and contractive behavior is observed in the mixtures with $sf{\leq}0.8$. Rubber particle plays different roles with strain level in the mixture: it increases a coordination number and controls a plasticity of the mixture in small strain; it prevents a buckling of force chain in intermediate strain; it leads a contractive behavior in large strain.

Cation Leaching from Soils Percolated with Simulated Sulfuric Acid Rainn (人工酸性 빗물에 의한 여러 土壤으로부터의 이온 洗脫)

  • Rhyu, Tae-Cheol;Joon-Ho Kim
    • The Korean Journal of Ecology
    • /
    • v.16 no.2
    • /
    • pp.169-180
    • /
    • 1993
  • Soils of four combinations, sand with high content of organic matter(SL), sand with low content of OM(SS), siltyl loam with high content of OM(LL) and silty loam with low content OM (LS), were filled on column and then percolated with simulated sulfuric acid rain with pH 5.6, 4.0, 3.5, 3.0 and 2.5. From soil leachates, pH and concentrations of basic cations and Al were determined. Cation concentrations in the leachates increased as pH of the rain decreased. The orders of buffering capacity of soil, leachability of cation from soil, leaching sensitivity of ion andbase saturation sensitivity of soil to acidity of the rain water were SS$\leq$K <$\leq$LL

  • PDF

The Removal of Phosphorus by Spent Foundry Sand (폐주물사를 이요한 인제거)

  • 윤철종;진양오;박승조
    • Resources Recycling
    • /
    • v.8 no.3
    • /
    • pp.26-30
    • /
    • 1999
  • The removal of phosphorus was investigated from sewage waste water (SWW) using the used foundry sand (UFS). The optimal pH occurred at pH 2 for adsorption of phosphorus species in batch test. Phosphorus could be recovered with 99.9% from SWW in two hours at pH 2 using 100 g of UFS per liler of SWW. The adsorption of phosphorus species on UFS obeyed Langmuir isotherm, whose equation could be expressed by 1= 0.00059/(1+2.49878). Continuous column test for adsorption showed that breakthrough point appeared In 25 hours on the condition of breakthrough concentration of 8 mg/l

  • PDF

PAHs 오염 토양내 오존이동특성;함수율과 수분과 토양 유기물의 영향

  • 배기진;정해룡;최희철
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.140-143
    • /
    • 2001
  • The packed column experiments were conducted with commercial Jumunjin sand(SOM content : 0.01 %) and a field soil(SOM content : 0.08 %) in order to understand the effects of water content and soil organic matter(SOM) on the transport of gaseous ozone in unsaturated soil contaminated with phenanthrene. Water content and SOM content were artificially controlled. As water content increased, earlier breakthrough was observed in the beginning of BTC of ozone, because direct contact of gaseous ozone with SOM and phenanthrene was prevented by water film formed between soil particles and gaseous ozone. The total removal of phenanthrene in Jumunjin sand was not affected by water content which was more than 99% at different water content(4.4, 8, 17.3%). However, the removal in field soil at water content 6.5 % and 20 % was 98% and 80 %.

  • PDF

A Field Test Study on stress concentration ratio of Crushed-Stone Column Pile (쇄석다짐말뚝의 응력분담비에 관한 현장실험 연구)

  • Lee, Min-Hee;Im, Jong-Chul;Hwang, Geun-Bae;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.525-532
    • /
    • 2004
  • Among soft ground treatment methods with granular soil used in domestic, the sand compaction pile method has been utilized greatly, but, as a result of exhaustion of sand and increase of unit cost, a necessity of an alternative method is suggested. In this study, the static load tests for crushed-stone compaction piles which were constructed on test field were performed. Based on test results, stress concentration ratios between the crushed-stone compaction pile and the soft ground were investigated and estimated. The stress concentration ratio was the range of 1.7 to 3.0 and the higher it was the more replacement rate was increased.

  • PDF

Flow Properties of Granular Sands through a Circular Orifice

  • Min, Shin-Hong;Rhee, Shang-hi;Kim, Yong-Bae
    • Archives of Pharmacal Research
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1979
  • The flow rate of various sand through circular orifice can be measured from a knowledge of a few easily measurable properties of the system. These are the orifice column and particle diameters, the angle of inclination of the orifice with the horizontal and an angle of repose of the granular sand material. Straight lines were obtained when the logarithm of the flow rate was plotted versus the logarithm of orfice diameter. No influence of excessive compaction and bed height was observed and the flow rate increased with decrease of particle diameter. The profile of flow developed the edge of the aperture in a way independent of its size. Linear relationship was observed between the angle of inclination of the orifice and the flow rate.

  • PDF

Evaluation of Soil Flushing Column Test for Oil-contaminated Soil Treatment (유류오염토양 처리를 위한 컬럼식 토양세정기술 평가)

  • Kang, Hui-Cheon;Han, Byeong-Gi;Kim, Joung-Dae;Seo, Seung-Won;Shin, Chul-Ho;Park, Joon-Seok
    • Clean Technology
    • /
    • v.23 no.3
    • /
    • pp.302-307
    • /
    • 2017
  • This study was conducted to evaluate the feasibility of in situ soil flushing for TPH-contaminated soil remediation with column test. The soil texture of the soil was sand and the initial TPH concentration was $9,369mg\; kg^{-1}$. 0.1% Tween-80 was selected as surfactant solution. And the acrylic and the glass syringe columns were used as reactors. In the acrylic column test, 35% of the initial TPH was removed in 1 PV of flushing and approximately 40% in 5 PV and finally 7 PV showed about 60%. The glass column test showed 3 ~ 12% higher removal efficiency than that of acrylic test until 5 PV of flushing. However, there was no difference in TPH removal efficiency when 7 PV of surfactant was finally flushed. Both of alum only and alum+polymer mixed surfactants showed also the best coagulation efficiency in $150mg\;L^{-1}$ of concentraion. When Tween 80 was newly dissolved in 0.1% to the recovered solution after the coagulation treatment, the removal efficiency was increased from 32.0% to 41.0% in comparison to the new 0.1% Tween 80 solution without reuse by coagulation treatment.

Removal of NAPL from Aquifer Using Surfactant-enhanced Air Sparging at Elevated Temperature (승온조건의 SEAS(surfactant-enhanced air sparging) 기술을 이용한 대수층 NAPL(n-decane)의 휘발제거)

  • Song, Young-Su;Kwon, Han-Joon;Kim, Heon-Ki
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.6
    • /
    • pp.87-94
    • /
    • 2009
  • Surfactant-enhanced air sparging (SEAS) was developed to suppress the surface tension of groundwater prior to air sparging resulting in higher air saturation and larger contact area between NAPL and gas during air sparging. Larger contacting interface between NAPL and gas means faster mass transfer of contaminants from NAPL to gas phase. This new technique, however, is limited to relatively volatile contaminants because vaporization is its basic mechanism of mass transfer. In this study, SEAS was tested at an elevated temperature for a semi-volatile n-decane, which is expected not to be a good candidate of SEAS application due to its low vapor pressure at ambient temperature. Three sparging experiments were conducted using 1-dimensional column (5 cm id, 80 cm length) packed with sand; (1) ambient temperature ($23^{\circ}C$), column saturated with distilled water, (2) SEAS at ambient temperature ($23^{\circ}C$), for n-decane contaminated sand, (3) SEAS at elevated temperature ($73^{\circ}C$), for n-decane contaminated sand. Higher air saturation was achieved by SEAS compared to that by air sparging without surfactant application. The n-decane removal efficiency of SEAS at elevated temperature was significantly higher(> 10 times) than that of ambient SEAS. The n-decane concentrations in the gas effluent from column during SEAS at $73^{\circ}C$ are found to be 10 times of those measured at ambient temperature. Thus, SEAS technique can be applied for removal of semi-volatile contaminants provided that an appropriate technique for elevating aquifer temperature is available.