• Title/Summary/Keyword: sampling points

Search Result 636, Processing Time 0.03 seconds

Timing-offset compensation techniques in ATSC DTV receivers (지상파 DTV 수신기에서 타이밍 옵셋 보상 기법)

  • 김용철;김대진
    • Journal of Broadcast Engineering
    • /
    • v.8 no.2
    • /
    • pp.146-152
    • /
    • 2003
  • ATSC DTV receivers use repetitive data segment syncs or Gardner algorithm as a tuning recovery circuit. Many multipath signals can induce timing-offset in the symbol timing recovery circuit using Gardner algorithm and this timing-offset shifts sampling instant to the wrong points, causing the performance of the equalizer to become nr. When many echoes exist, the optimal sampling instant will be the Point at which the main-path has a peak value. In this paper, by using channel correlation techniques, we find the optimal sampling instant, thereby compensating the timing offset and improving DTV reception performance. We analyzed the Performance enhancement of DTV receivers using the timing offset compensator.

Multirate Control of Takagi-Sugeno Fuzzy System

  • Kim, Do-Wan;Park, Jin-Bae;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.672-677
    • /
    • 2004
  • In this paper, a new dual-rate digital control technique for the Takagi-Sugeno (T-S) fuzzy system is suggested. The proposed method takes account of the stabilizablity of the discrete-time T-S fuzzy system at the fast-rate sampling points. Our main idea is to utilize the lifted control input. The proposed approach is to obtain the dual-rate discrete-time T-S fuzzy system by discretizing the overall dynamics of the T-S fuzzy system with the lifted control, and then to derive the sufficient conditions for the stabilization in the sense of the Lyapunov asymptotic stability for this system. An example is provided for showing the feasibility of the proposed discretization method.

  • PDF

Design Optimization of a Centrifugal Compressor Impeller Considering the Meridional Plane (자오면 형상을 고려한 원심압축기 임펠러 최적설계)

  • Kim, Jin-Hyuk;Choi, Jae-Ho;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.3
    • /
    • pp.7-12
    • /
    • 2009
  • In this paper, shape optimization based on three-dimensional flow analysis has been performed for impeller design of centrifugal compressor. To evaluate the objective function of an isentropic efficiency, Reynolds-averaged Navier-Stokes equations are solved with SST (Shear Stress Transport) turbulence model. The governing equations are discretized by finite volume approximations. The optimization techniques based on the radial basis neural network method are used for the optimization. Latin hypercube sampling as design of experiments is used to generate thirty design points within design space. Sequential quadratic programming is used to search the optimal point based on the radial basis neural network model. Four geometrical variables concerning impeller shape are selected as design variables. The results show that the isentropic efficiency is enhanced effectively from the shape optimization by the radial basis neural network method.

Development of Ultrasound Sector B-Scanner(II)-Digital Scan Converter- (초음파 섹터 B-스캐너의 개발(II)-디지탈 스캔 컨버터-)

  • 김주한;김영모
    • Journal of Biomedical Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.133-138
    • /
    • 1986
  • Abstract In a conventional digital sector scan system in the ultrasound medical imaging, the sampling space is in the polar coordinates while the display space is in the cartesian coordinates, which necessitates a coordinate transformation process resultion process resulting the overall system very complex and bulky. In this paper we propose a new architecture of the Digital-Scan-Converter (DSC) for the ultrasound sector scan system in which sampling space is the same as the display space, so the data are displayed as they are acquired without any interpola- tion process required. To implement the above real time DSC. two frequency synthesizes with very high switching time and a low-pass filter are required. The former determines the precise location of the data points and the latter fills the gap betw- een pixels in the horizontal direction.

  • PDF

Error Analysis Caused by Using the Dftin Numerical Evaluation of Rayleigh's Integral (레일리 인테그랄의 수치해석상 오차에 대한 이론적 고찰)

  • Kim, Sun-I.
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.323-330
    • /
    • 1989
  • Large bias errors which occur during a numerical evaluation of the Rayleigh's integral is not due to the replicated source problem but due to the coincidence of singularities of the Green's function and the sampling points in Fourier domain. We found that there is no replicated source problem in evaluating the Rayleigh's integral numerically by the reason of the periodic assumption of the input sequence in Dn or by the periodic sampling of the Green's function in the Fourier domain. The wrap around error is not due to an overlap of the individual adjacent sources but berallse of the undersampling of the Green's function in the frequency domain. The replicated and overlApped one is inverse Fourier transformed Green's function rather than the source function.

  • PDF

Design Optimization of a Staggered Dimpled Channel Using Neural Network Techniques (신경회로망기법을 사용한 엇갈린 딤플 유로의 최적설계)

  • Shin, Dong-Yoon;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.3 s.42
    • /
    • pp.39-46
    • /
    • 2007
  • This study presents a numerical procedure to optimize the shape of staggered dimple surface to enhance turbulent heat transfer in a rectangular channel. The RBNN method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer with shear stress transport (SST) turbulence model. The dimple depth-to-dimple print diameter (d/D), channel height-to-dimple print diameter ratio (H/D), and dimple print diameter-to-pitch ratio (D/S) are chosen as design variables. The objective function is defined as a linear combination of heat transfer related term and friction loss related term with a weighting factor. Latin Hypercube Sampling (LHS) is used to determine the training points as a mean of the design of experiment. The optimum shape shows remarkable performance in comparison with a reference shape.

SHAPE OPTIMIZATION OF INTERNAL COOLING CHANNEL WITH STEPPED CIRCULAR PIN-FINS (단을 가진 원형 핀휜이 부착된 냉각유로의 형상 최적 설계)

  • Moon, M.A.;Kim, K.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.229-232
    • /
    • 2008
  • This study presents a numerical procedure to optimize the shape of stepped circular pin-fins to enhance turbulent heat transfer. The KRG method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer with shear stress transport turbulent model. The objective function is defined as a linear combination of heat transfer and friction loss related terms with a weighting factor. Ten training points are obtained by Latin Hypercube Sampling for two design variables. Optimum shape has been successfully obtained with the increased objective function.

  • PDF

SHAPE OPTIMIZATION OF INTERNAL COOLING CHANNEL WITH STEPPED CIRCULAR PIN-FINS (단을 가진 원형 핀휜이 부착된 냉각유로의 형상 최적 설계)

  • Moon, M.A.;Kim, K.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.229-232
    • /
    • 2008
  • This study presents a numerical procedure to optimize the shape of stepped circular pin-fins to enhance turbulent heat transfer. The KRG method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer with shear stress transport turbulent model. The objective function is defined as a linear combination of heat transfer and friction loss related terms with a weighting factor. Ten training points are obtained by Latin Hypercube Sampling for two design variables. Optimum shape has been successfully obtained with the increased objective function.

  • PDF

DESIGN OPTIMIZATION OF A STAGGERED DIMPLED CHANNEL TO ENHANCE TURBULENT HEAT TRANSFER (열전달성능 향상을 위한 엇갈린 딤플 유로의 최적설계)

  • Shin, D.Y.;Kim, K.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.159-162
    • /
    • 2007
  • This study presents a numerical procedure to optimize the shape of a staggered dimpled surface to enhance the turbulent heat transfer in a rectangular channel. A optimization technique based on neural network is used with Reynolds-averaged Navier-Stakes analysis of the fluid flow and heat transfer with Shear Stress Transport turbulence model. The dimple depth-to-dimple print diameter ratio, channel height-to-dimple print diameter ratio, and dimple print diameter-to-pitch ratio are chosen as design variables. The objective function is defined as a linear combination of terms related to heat transfer and friction loss with a weighting factor. Latin Hypercube Sampling is used to determine the training points as a mean of the Design of Experiment. Optimal values of the design variables were obtained in a range of the weighting factor.

  • PDF

The Three-Stage Cluster Randomized Response Model for Obtaining Sensitive Information

  • Lee, Gi Sung;Hong, Ki Hak;Son, Chang Kyoon;Jung, Young Mee
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.1
    • /
    • pp.247-256
    • /
    • 2003
  • In this study, we systemize the theoretical validity for applying RRM to three-stage cluster sampling method and derive the estimate and it's variance of sensitive parameter. We derive the minimum variance form under the optimal values of the subsample sizes when the costs are fixed. Under the some given precision, we obtain the optimal values of the subsample sizes and derive the minimum cost form by using them. We apply the three-stage cluster RRM to field survey and suggest some necessary points for practical use.