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Abstract: In this paper, a new dual-rate digital control technique for the Takagi-Sugeno (T-S) fuzzy system is suggested.

The proposed method takes account of the stabilizablity of the discrete-time T-S fuzzy system at the fast-rate sampling points.

Our main idea is to utilize the lifted control input. The proposed approach is to obtain the dual-rate discrete-time T-S fuzzy

system by discretizing the overall dynamics of the T-S fuzzy system with the lifted control, and then to derive the sufficient

conditions for the stabilization in the sense of the Lyapunov asymptotic stability for this system. An example is provided for

showing the feasibility of the proposed discretization method.
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1. Introduction

Many industrial control systems consist of an analog plant

and a digital controller interconnected via analog to digital

(A/D) and digital to analog (D/A) converters. Owing to

the recent development of the microprocessor and its inter-

facing hardware, the digital controller is popularly utilized

for controlling complex dynamical systems such as aircrafts

[1], robots [4], hard disc drivers [5], and chaotic systems

[2,3, 6–10].

In practice, there are not all systems in which the A/D and

the D/A conversions are made uniformly at one single rate.

The faster D/A converter is used to take into account of the

effects of the intersampling behavior of the system. There

are also situations where the converse is true. For exam-

ple, it is difficult to implement antialiasing filters with long

time constants using analog technique. In such cases, it is

much easier to apply the faster A/D. Above and beyond

these causes, formulating the faster D/A or the faster A/D

aries from the hardware restrictions [14]. In both case, A/D

and D/A converters are operated at different rates. This is

called as multirate control system.

There have been fruitful researches in the digital control

system focusing on the multirate sampling. Systems with

multirate sampling were first analyzed in Kranc [15]. Addi-

tional researches are given in Jury [16,17], and Kalman and

Bertram [18]. More recent work on multirate systems is con-

cerned with e.g. system analysis and stability [14,19–21], op-

timal control of multirate systems with a quadratic cost func-

tion [22–24], and H∞ control of multirate systems [25,26]. It

is noted that these multirate digital control schemes basically

work only for a class of linear systems. For that reason, it is

highly demanded to develop the intelligent multirate digital

control for complex nonlinear systems.

Motivated by the above observations, this paper aims at

merging the Takagi-Sugeno (T-S) fuzzy model-based digi-

tal control and the multirate control technique for a class

of nonlinear systems. The main contribution of this paper
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Foundation (Project number: R05-2004-000-10498-0)

is to derive some sufficient conditions, in terms of the lin-

ear matrix inequalities (LMIs), such that the digitally con-

trolled system is asymptotically stable at every intersampling

points. Specifically, our main idea is to utilize the lifted con-

trol input. The proposed approach is to obtain the dual-rate

discrete-time T-S fuzzy system by discretizing the overall dy-

namics of the T-S fuzzy system with the lifted control, and

then to derive the sufficient conditions for the stabilization

in the sense of the Lyapunov asymptotic stability for this

system. An example is provided for showing the feasibility

of the proposed discretization method.

This paper is organized as follows: In Section 2., the lo-

cal discretization of the continuous-time T-S fuzzy system

is reviewed, and the global discretization problem is formu-

lated. Section 3.discusses a new global discretization of the

continuous-time T-S fuzzy system. In Section 4., a chaotic

Lorenz system is used to demonstrate the effectiveness of our

discretization method. The paper is concluded in Section 5..

2. Preliminaries and Problem Description

The T-S fuzzy model is described by fuzzy IF-THEN rules,

which represent local linear input-output relations of a non-

linear system. Consider the ith fuzzy rule of a SD T-S fuzzy

model with the sampling time Ts governed by

Ri : IF z1(t) is about Γi1 and · · · and zp(t) is about Γip

THEN
d

dt
x(t) = Aix(t) + Biu(t) (1)

where Ri, i ∈ Iq = {1, 2, . . . , q}, is the ith fuzzy rule,

zh(t), h ∈ Ip = {1, 2, . . . , p}, is the hth premise variable,

Γih, (i, h) ∈ Iq × Ip, is the fuzzy set, and u(t) = u(kTs) is

the piecewise-constant control input vector to be determined

time interval [kTs, kTs + Ts). Given a pair (x(t), u(t)), us-

ing the center-average defuzzification, product inference, and

singleton fuzzifier, the overall dynamics of the SD T-S fuzzy

model (1) is described by

d

dt
x(t) =

q∑
i=1

θi(z(t)) (Aix(t) + Biu(t)) (2)
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Fig. 1. Trajectory of the Lorenz system.

where wi(z(t)) =
∏p

h=1 Γih(zh(t)), θi(z(t)) = wi(z(t))∑q

i=1 wi(z(t))
,

and Γih(zh(t)) is the grade of membership of zh(t) in Γih.

Based on the PDC [12, 13], we consider the following fuzzy

digital control law for the fuzzy model (2):

Ri : IF z1(kTs) is about Γi1 and · · · and zp(kTs) is about Γip

THEN u(t) = Kdix(kTs) (3)

for t ∈ [kTs, (k + 1)Ts). The overall state feedback fuzzy-

model-based digital control law is represented by

u(t) =

q∑
i=1

θi(z(kTs))Kix(kTs) (4)

Problem 1: Because the fuzzy model (2) is a hybrid sys-

tem which involves both continuous-time and discrete-time

signals, in general, stabilizing controller at the intersampling

points do not exist. The aim of this paper is to design the

digital control law (4) such that the closed-loop system is

asymptotically stable at every intersampling points.

3. Main Results

To remedy the unfortunate intersample ripple problem, we

apply the the fast discretization technique[11], which consid-

ers the fast sampling time Tf = T

n
, to the sampled-data T-S

fuzzy system (2). The fast discretization leads to a dual-

rate discrete-time system which can be lifted to a single-rate

discrete-time system. Specifically, we first connect the fast-

sampling operator STf
and the fast-hold operator HTf

with

the subinterval [kT + lTf , kT + (l + 1)Tf ), l = 0, 1, . . . , n−1,

to the sampled-data T-S fuzzy system (2). This leads to a

time-varying discrete-time system because of two sampling

rates. To remedy this, we invoke the discrete-time lifting.

Assumption 1: [10] Suppose that the firing strength θi(t)

for t ∈ [kTs, (k + 1)Ts) is θi(kTs). That is

θi(t) ≈ θi(kTs) (5)

Then, the nonlinear matrices
∑q

i=1 θi(z(t))Ai and
∑q

i=1 θi(z(t))Bi

of (2) can be approximated as the piecewise constant matri-

ces
∑q

i=1 θi(z(kTs))Ai and
∑q

i=1 θi(z(kTs))Bi, respectively.

Theorem 1: The sampled-data T-S fuzzy system (2) can

be converted to the following pointwise dynamical behavior
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Fig. 2. The time responses of the controlled Lorenz system

(Ts = 0.04 sec., dotted line: n = 1; dashed line: n = 2;

solid line: n = 4).

with a slow sampled system and a lifted sampled input:

x[k + 1] = G(θ[k])x[k] + H̃(θ[k])ũ[k] (6)

where x[k] = x(kTs), u[k] = u(kTs), θ[k] = θ(z(kTs)),

G(θ[k]) = Gn
f (θ[k]) =

(∑q

i=1 θi[k]Gfi

)n
, H(θ[k]) =(

Gn−1
f (θ[k]) + Gn−2

f (θ[k]) + · · · + I
)

Hf (θ[k]), Hf (θ[k]) =∑q

i=1 θi(z(kTs))Hfi, Gfi = exp (AiTf ), Hfi = (Gfi −

I)A−1
i Bi, a lifted sampled input ũ[k] is defined as

ũ[k] =

⎡⎢⎢⎢⎢⎣
ũ1[k]

ũ2[k]
...

ũn[k]

⎤⎥⎥⎥⎥⎦ (7)

=

⎡⎢⎢⎢⎢⎣
u(lTf )

u((l + 1)Tf )
...

u((l + n − 1)Tf )

⎤⎥⎥⎥⎥⎦ (8)

and the matrices G(θ[k]) and H̃(θ[k]) are given by[
G(θ[k]), H̃(θ[k])

]
=

[
Gn

f (θ[k]), Gn−1
f (θ[k])Hf (θ[k]) Gn−2

f (θ[k])Hf (θ[k])

· · · Hf (θ[k])
]

(9)

Corollary 1: The fast-sampled discrete-time system of (2)

is obtained as follows:

x[l + 1] = Gf (θ[l])x[l] + Hf (θ[l])u[l] (10)
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Fig. 3. The trajectories of the controlled Lorenz system

(Ts = 0.04 sec., dotted line: n = 1; dashed line: n = 2;

solid line: n = 4).

where x[l] = x(lTf ) and θ[l] = θ(lTf ).

Proof: When n = 1 and Ts = Tf , it can be straightfor-

wardly proved by Theorem 1.

Now, we derive the stability conditions for the dual-rate T-S

fuzzy system (6). Consider the open-loop system for (6).

x[k + 1] = G(θ[k])x[k] (11)

The following theorem gives a set of conditions for ensuring

the stability of (11)

Theorem 2: The equilibrium of (11) is globally asymp-

totically stable in the sense of Lyapunov stability criterion if

there exists a common positive definite matrix P such that

G
T
fiPGfi − P ≺ 0 i ∈ [1, q] (12)

Remark 1: From Theorem 2, we know that if Gf (θ[l]) is

globally asymptotically stable, so is G(θ[k]). This is very

useful property for the design of digital controller.

Our main objective is to construct the stabilizing controller

for (2) at fast-rate sampling points. We first design a sta-

bilizing controller for the fast-sampled discrete-time system,

and then convert the controlled system into (6).

We consider the following state feedback fuzzy control law

for (10):

u[l] =

q∑
i=1

θ[l]Kix[l] (13)

Then, the closed-loop system can be rewritten as

x[l + 1] =

q∑
i=1

q∑
j=1

θi[l]θj [l] (Gfi + HfiKj) x[l] (14)

The following theorem provides the sufficient conditions for

the stabilization in the sense of the Lyapunov asymptotic

stability for (2).

Theorem 3: For the dual-rate T-S fuzzy system (6), the

closed-loop system under the state feedback controller law

ũ[k] =

⎡⎢⎢⎢⎢⎣
K(θ[k])

K(θ[k]) (Gf (θ[k]) + Hf (θ[k])K(θ[k]))
...

K(θ[k]) (Gf (θ[k]) + Hf (θ[k])K(θ[k]))n−1

⎤⎥⎥⎥⎥⎦ x[k]

(15)
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Fig. 4. The time responses of the controlled Lorenz system

(Ts = 0.08 sec., dotted line: n = 1; dashed line: n = 2;

solid line: n = 4).

is globally asymptotically stabilizable in the sense of Lya-

punov stability criterion if there exist symmetric positive

definite matrix Q and constant matrix F such that (16),

(17) shown at the top of the next page, where ∗ denotes the

transposed element in symmetric position.

4. Computer Simulations

In this section, we use the results in Section 3.to discretize the

continuous-time T-S fuzzy system, which is the fuzzy model

of the chaotic Lorenz equation. The Lorenz equation is given

by

d

dt

⎡⎢⎣ x1(t)

x2(t)

x3(t)

⎤⎥⎦ =

⎡⎢⎣ −σx1(t) + σx2(t)

rx1(t) − x2(t) − x1(t)x3(t)

x1(t)x2(t) − bx3(t)

⎤⎥⎦ (18)

where σ, r, b > 0 are parameters (σ is the Prandtl number,

r is the Rayleigh number, and b is a scaling constant). The

corresponding T-S fuzzy model of the system in (18) is ex-

pressed as follows:

R1 : IF x1(t) is about Γ11, THEN
d

dt

⎡⎢⎣ x1(t)

x2(t)

x3(t)

⎤⎥⎦ = A1

⎡⎢⎣ x1(t)

x2(t)

x3(t)

⎤⎥⎦
R2 : IF x1(t) is about Γ21, THEN

d

dt

⎡⎢⎣ x1(t)

x2(t)

x3(t)

⎤⎥⎦ = A2

⎡⎢⎣ x1(t)

x2(t)

x3(t)

⎤⎥⎦
(19)
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⎡⎣ (
GfiQ+HfiFi−Q

Tf

)T

+
GfiQ+HfiFi−Q

Tf
∗

GfiQ+HfiFi−Q√
Tf

−Q

⎤⎦ ≺ 0 i ∈ [1, q] (16)

⎡⎣ (
GfiQ+HfiFj+GfjQ+HfjFi−2Q

2Tf

)T

+
GfiQ+HfiFj+GfjQ+HfjFi−2Q

2Tf
∗

GfiQ+HfiFj+GfjQ+HfjFi−2Q

2
√

Tf

−Q

⎤⎦ ≺ 0 i < j ∈ [1, q] (17)
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Fig. 5. The trajectories of the controlled Lorenz system

(Ts = 0.08 sec., dotted line: n = 1; dashed line: n = 2;

solid line: n = 4).
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Fig. 6. The time responses of the controlled Lorenz system

(Ts = 0.1 sec., dotted line: n = 1; dashed line: n = 2;

solid line: n = 4).
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Fig. 7. The trajectories of the controlled Lorenz system

(Ts = 0.1 sec., dotted line: n = 1; dashed line: n = 2;

solid line: n = 4).

where

A1 =

⎡⎢⎣ σ −σ 0

r −1 −x1min

0 x1min −b

⎤⎥⎦ , A2 =

⎡⎢⎣ σ −σ 0

r −1 −x1max

0 x1max −b

⎤⎥⎦ ,

(20)

and the membership functions are

Γ1
1(x1(t)) =

−x1(t) + x1max

x1max − x1min

, Γ2
1(x2(t)) =

x1(t) − x1min

x1max − x1min

.

(21)

where Γij are positive semi-definite for all x ∈

[x1min, x1max] = [−20, 30].

First, we simulate the continuous-time T-S fuzzy system.

The input matrices are arbitrary chosen as

B1 = B2 =

⎡⎢⎣ 1

0

0

⎤⎥⎦ . (22)

where preserve the controllability of the system. Figure

1 shows the trajectory of the T-S fuzzy system of the

Lorenz system with the input u(t) = 10 sin(10t), the pa-

rameter choice (σ, r, b) = (10, 28, 8/3), and initial condition

x(0) = [10,−10, 10]T .

For the T-S fuzzy system (19) with (22), we seek to a stabi-

lizing dual-rate digital controller (15), where n = 1, 2, and

4. Applying Theorem 3 yields the digital gain matrices Kdi
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for the sampling Ts = 0.04 sec., as

with n = 1,

K1 =
[

−31.2155 −21.7680 −13.3059
]

K2 =
[

−30.0575 −16.8091 18.1496
]

with n = 2,

K1 =
[

−55.8677 −39.9455 −13.6820
]

K2 =
[

−55.6458 −37.7265 18.7637
]

with n = 4,

K1 =
[

−105.1277 −72.8969 −14.2594
]

K2 =
[

−105.0382 −72.2410 17.9034
]

(23)

Figure 2 and 3 report that all trajectories are guided to the

equilibrium points at origin.

Another relatively longer sampling Ts = 0.08 sec. is chosen

so as to show the superiority of the proposed method to the

single-rate control (n = 1) in the stabilizability. Based on

Theorem 3, the digital control gain matrices are obtained as

follows:

with n = 1,

K1 =
[

−17.0985 −8.2747 −10.9188
]

K2 =
[

−14.0584 −1.2786 10.9158
]

with n = 2,

K1 =
[

−31.2155 −21.7680 −13.3059
]

K2 =
[

−30.0575 − 16.809118.1496
]

with n = 4,

K1 =
[

−55.8677 − 39.9455 − 13.6820
]

K2 =
[

−55.6458 − 37.726518.7637
]

(24)

Figure 2 and 3 depict the trajectories and the time responses

of the digitally controlled system. As shown in these figures,

the single-rate digitally controlled system is not stable in

spite of obtaining the feasible gain matrices. On the other

hand, the dual-rate controllers with Tf = Ts

2
and Tf = Ts

4

stabilize the given system.

Finally, we examine the case of a large sampling Ts = 0.1

sec.. From Theorem 3, it is impossible to obtain the feasible

gain matrices for the single-rate digital control (n = 1). The

dual-rate gain matrices can be given by

with n = 2,

K1 =
[

−26.1471 −17.1350 −13.2475
]

K2 =
[

−24.2624 −10.8414 17.2503
]

with n = 4,

K1 =
[

−45.9875 −33.0960 −13.5411
]

K2 =
[

−45.5765 −30.0424 18.8604
]

(25)

Figure 6 and 7 shows that the time responses and the trajec-

tories of the dual-rate controlled systems. Compared with

n = 2, the stbilizability of the given system can be well

guaranteed, because the digital control is ensured at the in-

tersample points (Ts

4
).

It is noted that the proposed method guarantees the stability

of the controlled system in much wider range of sampling pe-

riod than the single-rate digital method in which may fail to

stabilize the system especially for relatively longer sampling

period, which is major advantage of the proposed method.

This is because the proposed dual-rate control is ensured at

intersample points, whereas the other approach does not.

5. Closing Remarks

In this paper, a new dual-rate digital control method has

been proposed for the T-S fuzzy system, and its validity has

been verified through the computer simulations. We have

formulated and solved the intersampling stability problem

for the fuzzy-model-based sampled-data system. The pro-

posed fast discretization approach leads to the dual-rate T-S

fuzzy system which can be lifted to a single-rate discrete-

time system. For this system, the stability conditions at the

fast-rate sampling points have been derived. Finally, for the

digitally controlled T-S fuzzy system, the sufficient stabi-

lization conditions in the sense of the Lyapunov asymptotic

stability have been derived. For the given simulations, the

results have shown that the proposed discretization method

yields the smaller discretization error than the conventional

discretiozation method. It indicates the great potential for

reliable application of design of the fuzzy-model-based digi-

tal controller.
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