• 제목/요약/키워드: sampling model

검색결과 2,083건 처리시간 0.043초

Design of a Life Test Sampling Plan Based on the Cost Model

  • Kwon, Young-Il
    • International Journal of Reliability and Applications
    • /
    • 제6권1호
    • /
    • pp.31-39
    • /
    • 2005
  • An economic life test sampling plan for products with exponential lifetime distribution is developed. To reduce test time, a test plan with curtailed Type II censoring is considered. A cost model is constructed which involves three cost components; test cost, accept cost, and reject cost. Determination of optimal plan minimizing the expected average cost per lot is discussed with a constraint related to consumer's risk. Some numerical examples are provided.

  • PDF

Mean estimation of small areas using penalized spline mixed-model under informative sampling

  • Chytrasari, Angela N.R.;Kartiko, Sri Haryatmi;Danardono, Danardono
    • Communications for Statistical Applications and Methods
    • /
    • 제27권3호
    • /
    • pp.349-363
    • /
    • 2020
  • Penalized spline is a suitable nonparametric approach in estimating mean model in small area. However, application of the approach in informative sampling in a published article is uncommon. We propose a semiparametric mixed-model using penalized spline under informative sampling to estimate mean of small area. The response variable is explained in terms of mean model, informative sample effect, area random effect and unit error. We approach the mean model by penalized spline and utilize a penalized spline function of the inclusion probability to account for the informative sample effect. We determine the best and unbiased estimators for coefficient model and derive the restricted maximum likelihood estimators for the variance components. A simulation study shows a decrease in the average absolute bias produced by the proposed model. A decrease in the root mean square error also occurred except in some quadratic cases. The use of linear and quadratic penalized spline to approach the function of the inclusion probability provides no significant difference distribution of root mean square error, except for few smaller samples.

MF sampler: 동영상 기반 패션 검색 모델의 성능 향상을 위한 샘플링 방법 (MF sampler: Sampling method for improving the performance of a video based fashion retrieval model)

  • 백상훈;박종혁
    • 지능정보연구
    • /
    • 제28권4호
    • /
    • pp.329-346
    • /
    • 2022
  • 최근 소셜 미디어의 숏폼(Short form) 동영상(인스타그램, 틱톡, 유튜브) 시장이 점차 증가하면서 인공지능 영역에서는 이를 활용한 연구가 활발히 진행되고 있다. 대표적인 연구분야로 동영상 내의 패션 상품을 탐지하고 상품 이미지를 검색하는 Video to shop 을 들 수 있다. 이와 같은 동영상 기반 인공지능 모델에서는 Convolution 연산을 사용하여 상품의 특징을 추출한다. 하지만 연산 자원의 제한으로 인해, 동영상의 모든 프레임을 사용하여 특징을 추출하는 것은 현실적으로 불가능하다. 이로 인해, 기존 연구에서는 전체 프레임 중 일부만 샘플링해서 사용하거나, 주제의 특성을 활용한 샘플링 방법을 개발하여 이를 통해 위 문제점을 개선하고, 모델의 성능도 향상시켰다. 기존의 Video to shop 연구에서는 프레임을 샘플링 할 때, 무작위로 일부분의 프레임을 샘플링하거나 균등한 간격으로 샘플링 한다. 하지만 이러한 샘플링 방법은 상품이 존재하지 않는 노이즈 프레임을 샘플링 하면서 패션 상품 검색 모델의 성능을 저하시킨다. 이에 본 연구는 노이즈 프레임을 제거하고 검색 모델의 성능을 향상시키는 샘플링 방법 MF(Missing Fashion items on frame) sampler를 제안한다. MF sampler는 키 프레임 메커니즘(Mechanism)을 발전시켜 자원 한계의 문제점을 개선했다. 또한, 노이즈 탐지 모델을 활용한 노이즈 프레임 제거를 통해 검색 모델의 성능을 향상시켰다. 이와 같은 결과는 실험을 통해 확인되었고, Video to shop 패션 상품 검색에 있어 성능 향상과 효과적인 학습이 가능하다는 것을 확인할 수 있었다.

A Sampling Inspection Plan with Human Error: Considering the Relationship between Visual Inspection Time and Human Error Rate

  • Lee, Yong-Hwa;Hong, Seung-Kweon
    • 대한인간공학회지
    • /
    • 제30권5호
    • /
    • pp.645-650
    • /
    • 2011
  • Objective: The aim of this study is to design a sampling inspection plan with human error which is changing according to inspection time. Background: Typical sampling inspection plans have been established typically based on an assumption of the perfect inspection without human error. However, most of all inspection tasks include human errors in the process of inspection. Therefore, a sampling inspection plan should be designed with consideration of imperfect inspection. Method: A model for single sampling inspection plans were proposed for the cases that visual inspection error rate is changing according to inspection time. Additionally, a sampling inspection plan for an optimal inspection time was proposed. In order to show an applied example of the proposed model, an experiment for visual inspection task was performed and the inspection error rates were measured according to the inspection time. Results: Inspection error rates changed according to inspection time. The inspection error rate could be reflected on the single sampling inspection plans for attribute. In particular, inspection error rate in an optimal inspection time may be used for a reasonable single sampling plan in a practical view. Conclusion: Human error rate in inspection tasks should be reflected on typical single sampling inspection plans. A sampling inspection plan with consideration of human error requires more sampling number than a typical sampling plan with perfect inspection. Application: The result of this research may help to determine more practical sampling inspection plan rather than typical one.

점진적 샘플링과 정규 상호정보량을 이용한 온라인 기계학습 공조기 급기온도 예측 모델 개발 (Development of Online Machine Learning Model for AHU Supply Air Temperature Prediction using Progressive Sampling and Normalized Mutual Information)

  • 추한경;신한솔;안기언;라선중;박철수
    • 대한건축학회논문집:구조계
    • /
    • 제34권6호
    • /
    • pp.63-69
    • /
    • 2018
  • The machine learning model can capture the dynamics of building systems with less inputs than the first principle based simulation model. The training data for developing a machine learning model are usually selected in a heuristic manner. In this study, the authors developed a machine learning model which can describe supply air temperature from an AHU in a real office building. For rational reduction of the training data, the progressive sampling method was used. It is found that even though the progressive sampling requires far less training data (n=60) than the offline regular sampling (n=1,799), the MBEs of both models are similar (2.6% vs. 5.4%). In addition, for the update of the machine learning model, the normalized mutual information (NMI) was applied. If the NMI between the simulation output and the measured data is less than 0.2, the model has to be updated. By the use of the NMI, the model can perform better prediction ($5.4%{\rightarrow}1.3%$).

Sampling Based Approach to Bayesian Analysis of Binary Regression Model with Incomplete Data

  • Chung, Young-Shik
    • Journal of the Korean Statistical Society
    • /
    • 제26권4호
    • /
    • pp.493-505
    • /
    • 1997
  • The analysis of binary data appears to many areas such as statistics, biometrics and econometrics. In many cases, data are often collected in which some observations are incomplete. Assume that the missing covariates are missing at random and the responses are completely observed. A method to Bayesian analysis of the binary regression model with incomplete data is presented. In particular, the desired marginal posterior moments of regression parameter are obtained using Meterpolis algorithm (Metropolis et al. 1953) within Gibbs sampler (Gelfand and Smith, 1990). Also, we compare logit model with probit model using Bayes factor which is approximated by importance sampling method. One example is presented.

  • PDF

개선된 선형 샘플치 출력 조절기 (An improved linear sampled-data output regulators)

  • 정선태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1726-1729
    • /
    • 1997
  • In general, the solvability of linear robust output regulation problem are not preserved under time-sampling. Thus, it is found that the digital regulator implemented by itme-sampling of anlog output regulator designed based on the continuous-time linear system model is nothing but a 1st order approximation with respect to time-sampling. By the way, one can design an improved sampled-data regulator with respect to sampling time by utilizing the intrinsic structure of the system. In this paper, we study the system structures which it is possible to design an improved sampled-data regulator with respect to sampling time.

  • PDF

소비자 보호를 위한 선별형 샘플링 검사와 신뢰성 샘플링 검사의 최적설계에 관한 연구 (A Study on the Rectifying Inspection Plan & Life Test Sampling Plan Considering Cost)

  • 강보철;조재립
    • 품질경영학회지
    • /
    • 제30권1호
    • /
    • pp.74-96
    • /
    • 2002
  • The objectives of this study is to suggest the rectifying sampling inspection plan considering quality cost. Limiting quality level(LQL) plans(also called LTPD plans) and outgoing quality(OQ) plans are considered. The Hald's linear cost model is discussed with and without a beta prior for the distribution of the fraction of nonconforming items in a lot. It is assumed that the sampling inspection is error free. We consider the design of reliability acceptance sampling plan (RASP) for failure rate level qualification at selected confidence level. The lifetime distribution of products is assumed to be exponential. MIL-STD-690C and K C 6032 standards provide this procedures. But these procedures have some questions to apply in the field. The cost of test and confidence level(1-$\beta$ risk) are the problem between supplier and user. So, we suggest that the optimal life test sampling inspection plans using simple linear cost model considering product cost, capability of environment chamber, environmental test cost, and etc. Especially, we consider a reliability of lots that contain some nonconforming items. In this case we assumed that a nonconforming item fail after environmental life test. Finally, we develope the algorithm of the optimal sampling inspection plan based on minimum costs for rectifying inspection and RASP. And computer application programs are developed So, it is shown how the desired sampling plan can be easily found.

Sampling Error Variation due to Rainfall Seasonality

  • Yoo, Chulsang
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2001년도 학술발표회 논문집(I)
    • /
    • pp.7-14
    • /
    • 2001
  • In this study, we characterized the variation of sampling errors using the Waymire-Gupta-rodriguez-Iturbe multi-dimensional rainfall model (WGR model). The parameters used for this study are those derived by Jung et al. (2000) for the Han River Basin using a genetic algorithm technique. The sampling error problems considering in this study are those far using raingauge network, satellite observation and also for both combined. The characterization of sampling errors was done for each month and also for the downstream plain area and the upstream mountain area, separately. As results of the study we conclude: (1) The pattern of sampling errors estimated are obviously different from the seasonal pattern of mentally rainfall amounts. This result may be understood from the fact that the sampling error is estimated not simply by considering the rainfall amounts, but by considering all the mechanisms controlling the rainfall propagation along with its generation and decay. As the major mechanism of moisture source to the Korean Peninsula is obviously different each month, it seems rather norma1 to provide different pattern of sampling errors from that of monthly rainfall amounts. (2) The sampling errors estimated for the upstream mountain area is about twice higher than those for the down stream plain area. It is believed to be because of the higher variability of rainfall in the upstream mountain area than in the down stream plain area.

  • PDF

Structural reliability analysis using temporal deep learning-based model and importance sampling

  • Nguyen, Truong-Thang;Dang, Viet-Hung
    • Structural Engineering and Mechanics
    • /
    • 제84권3호
    • /
    • pp.323-335
    • /
    • 2022
  • The main idea of the framework is to seamlessly combine a reasonably accurate and fast surrogate model with the importance sampling strategy. Developing a surrogate model for predicting structures' dynamic responses is challenging because it involves high-dimensional inputs and outputs. For this purpose, a novel surrogate model based on cutting-edge deep learning architectures specialized for capturing temporal relationships within time-series data, namely Long-Short term memory layer and Transformer layer, is designed. After being properly trained, the surrogate model could be utilized in place of the finite element method to evaluate structures' responses without requiring any specialized software. On the other hand, the importance sampling is adopted to reduce the number of calculations required when computing the failure probability by drawing more relevant samples near critical areas. Thanks to the portability of the trained surrogate model, one can integrate the latter with the Importance sampling in a straightforward fashion, forming an efficient framework called TTIS, which represents double advantages: less number of calculations is needed, and the computational time of each calculation is significantly reduced. The proposed approach's applicability and efficiency are demonstrated through three examples with increasing complexity, involving a 1D beam, a 2D frame, and a 3D building structure. The results show that compared to the conventional Monte Carlo simulation, the proposed method can provide highly similar reliability results with a reduction of up to four orders of magnitudes in time complexity.