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Abstract

The analysis of binary data appears to many areas such as statistics,
biometrics and econometrics. In many cases, data are often collected
in which some observations are incomplete. Assume that the miss-
ing covariates are missing at random and the responses are completely
observed. A method to Bayesian analysis of the binary regression
model with incomplete data is presented. In particular, the desired
marginal posterior moments of regression parameter are obtained us-
ing Meterpolis algorithm (Metropolis et al. 1953) within Gibbs sam-
pler (Gelfand and Smith, 1990). Also, we compare logit model with
probit model using Bayes factor which is approximated by importance
sampling method. One example is presented.
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1. INTRODUCTION

Generalized linear model (GLM : McCullagh and Nelder, 1989) is an ex-
tension of the classical linear models and so have unified regression methodol-
ogy. Regression and discrimination using probit and logit models have become
increasingly popular with the easy availability of appropriate computer rou-
tines. The classical approach fits a binary response regression model using
maximum likelihood, and inferences about the model are based on the associ-
ated asymptotic theory. In the statistical literature on the analysis of indepen-
dent data, EM algorithm (Dempster, Laird and Rubin, 1977) was employed
to many areas. For examples, Fuchs (1982) for problems of incomplete data
in log-linear models, and Ibrahim (1990) for incomplete data in GLM. Also,
Vach and Schmacher (1993) considered logistic regression with incompletely
observed categorical covariates. Our focus is a fully Bayesian parametric ap-
proach. Use of the Bayesian framework for inference with regard to the GLM
only with complete data dates back to work by Stephens and Dellaportas
(1992), Albert and Chib (1993), Dellaportas and Smith (1993). In our view,
wider use of the Bayesian framework has been impeded by the difficulties in
computing required marginal posterior distributions of the model parameters.
Recently developed methods in computation techniques, so called the Gibbs
sampler, an iterative Monte Carlo method, avoids sophisticated analytic and
numerical high dimensional integration procedures. The conceptual simplicity
of Gibbs sampler may prove an attractive alternative to the analytic and /or
numerical sophistication demanded by other methods.

In particular, in section 2 we formulate the Bayesian binary regression
model with incomplete data. We clarify what distributions are sought and
what distributions can be readily sampled. Also the estimate of marginal
posterior density is proposed without using kernel density estimation. In sec-
tion 3, Bayesian model selection is explained using the approximating Bayes
factor. In section 4, we present one example.

2. BAYESIAN FORMULATION FOR BINARY
REGRESSION MODEL

Densities are denoted generically by brackets, so joint, conditional, and
marginal forms, for example, appear as [X,Y], [X|Y] and [X], respectively.
Suppose that yi,...,y, are independent observations having a density in the
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exponential family of the form
[y:16:, 6] = exp{(y:6: — b(6,))/a:(8) + cyi, ¢)} (2.1)

for some functions a;(), b(-) and ¢(-). The parameters 6, is called the canonical
parameter for the ith observation and ¢ is a scalar dispersion parameter
distinct from 6,. Now consider the GLM with g(u;) = n; = z!B where z! is
a 1 x p vector corresponding to the ith row of n x p matrix of covariates X,
B is a p X 1 vector of regression parameter and ¢ is a monotonic differential
function(the link function), and y; = E(Y;). In GLM, if the relationship
between §; and S is of the form 6; = h(x!3) for some function & depending on
the link function g, the joint probability density of n independent observations
Y = (y1,...,¥.) can be written as

[Y1x,8] = l:[ exp{(y:h(z;8) — b(h(z;0)))/a:(¢) + c(z:, 6)}. (2.2)

For the binary regression model, suppose that n independent binary random
variables Y7, ...,Y, are observed, where Y, is distributed Bernoulli with prob-
ability of success p;. Then the p; are related to a set of covariates that may be
continuous or discrete. Define the binary regression model as p; = H (z!8),
t=1,...,n where 3 is a p x 1 vector of unknown parameters, z} is a vector
of known covariates and H is a known cdf linking the probabilities p; with
the linear structure z!3.

The probit model is obtained if H is the standard Gaussian cdf, while the
logit model is obtained if H is the logistic cdf. We consider a binary regression
model with m types of covariates and ! missing data among n total covari-
ate data where m is the number of all possible combinations of covariates.
Without loss of generality, reorder the data so that the first n — [ data are
completely observed and the remaining ! data are unobserved (incomplete).

The essential idea is quite simple. Suppose that along with the missing
covariate z;, we have the corresponding latent data, say z; (see Tanner and
Wong, 1987). So, we assume that the missing covariates are missing at ran-
dom(MAR) and the responses(y’s) are completely observed. Also we assume
that all covariates are dichotomized. So we specify a joint distribution on
X; as [z;]y] = [T, vy’ ) where I;(z;) is an indicator function for the jth
sequence of covariate vector z{(j = 1,...,m) and 217 = L

Let [3|6] be a proper or improper density which summarizes our prior
information about 8 with hyperparameter §. At the third stage, we may
consider the distribution [6] of 6. In this situation, if our interest centers on
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the marginal distribution of g;, the integration operations necessary are not
analytically tractable, and so we are forced to use computational techniques.
Then the joint density for Y, 3,6 and ~ is of the form

[Y.8,6,v1X] = [Y|X,8][8l8][s][]
o« TLeap{win(ain) = (a(EN)/6 + cla )
e TITT « 816] ]+ ). .39
i=1j=1
The marginal posterior of j3; is given by
[ﬂt] = [ﬁi‘Y’ X] = f[ﬁiya X] Hj;éi dﬂj
(2.4)

[1V.8.6.71X]dvds
f ff[} 8,67\ X dBd~ydés Hj#i dlBl

The joint posterior distribution of 3 given the data is proportional to
expression (2.3). However, marginalization of expression (2.3) requires in-
tegration over § and v which is generally a formidable analytic problem.
Use of Gibbs sampler, as discussed in the context of hierarchical Bayesian
models in Gelfand and Smith (1990) enables a straightforward sampling-
based solution to such problems. Implementation requires sampling from
the complete conditional distributions [y|Y, X, 8] and [3:|Y, X,~, B;,5 # il,
i = 1,...,k. Each of these distributions is also proportional to expression
(2.4). Random generation methods such as Metropolis algorithm (Metropolis
et al. 1953) enable such sampling. Since the distribution of y; given z; and
8 is Bernoulli with probability of success p;, assume that for logit or probit
model, p; = ezp(z;'8)(1 + exp(z,'B))* or p; = ®(z;'B), respectively where
' = (1, za,...,2ip-1) and B = (Bo, B1, ..., B,-1)" and ® denotes the cumu-
lative distribution function of standard normal variable. Assume that g is
distributed to the normal density with mean vector u = (po, p1,-- . Htp-1)
and the covariance-variance matrix ¥ and [v] is Dirichlet. That is,

™m

[7|ala'-' 1n—+—l] 0(7(“ L. ’77(,’;”_1(1_2’717)"""[—1- (25)

Fori =1,...,1, let Z; = X,_;+:- That is, Z,’s denote the covariates with
missing data and then X = (X1,...,X.21, Z1,...,Z)).
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2.1 Logit model

Since p; = exp(z,'8)(1 + ezp(x;'8)) ", the joint density for Y, 8,6 and ~
is of the form

[Y:8,6,71X] = [Y|X,B][Bls][8][~]

p~1

x exp Zyz (Bo + Z z,iB;) — Zloy(l + ezp(Bo + ZL,B )

m

o TIIT22 + 816)+ ). (2.6)

i=1j=1

So to apply the Gibbs sampler, the desired full conditional distributions
are as follows:
For 1 S 1 < l(Zl, ceny Zl or X,,_/+1, ...,X"),

(ZiY, X, 1<k <n—1,2,,1<j<1,5#54,8,9]
eExXp {Kt*l-}-i[ﬂo + Zf;ll leﬂ] log[l + e:L.p(/BO + E[]) : Z”/B }H"" 1 (/

1(7)’

> exp {Yn~1+¢[50 + ij);} Z;Bj] — log[1 + exp(By + 2 % ZiiB;) }I—Y," 17;

(2.7)
where the summation is over all cases of X’s ( In this case, there are m
summations).
Let (E-I)U = 7'1']‘, /1,: = W; — % 2]#t(/87 — Nj)’rij for 7 = 0, 1, ey P — 1 and
j=01,...,p— 1.
[IBOIY7XLa1SkSn”lvzlalszslaﬂn];éov’Y] (28)

n p—-1
ocezp{Z[yiﬁo log(1+exp(ﬂo+zx,,ﬂ )] - T°°( u5)2}
i=1

for1<k<p-1,
[Bk,Yanal S k S TL“"l,Z,,',]. <z < la/Bj,j #k’r)l] (29)

n p—1
X exp {Z[yﬂikﬁk — log(1 + exp(By + Z z:i8;))] — ‘T&(ﬁx w0 )’ }
i=1 i=1
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and since [Y|Y, X;,1 <k <n-1,Z;,1 <i<1,B] x M*H”Hm I(z ’
for 1 <k <m,

m ampt—1 ™
[’YkIY,X,ﬂ1'7jaj 7& k] & ’n:"‘-_l (1 - Z7t) H H ’ (20 . (210)

i=1 =1 j=

2.2. Probit model
Under the usual probit model, for i =1,...,n, let

O '(p) =Bo+ X1+ ...+ Xip-18p-1-

Using the idea of Albert and Chib (1993), define the latent variables W =
(Wy,...,W,) such that W; ~ N(X,'8,1), and such that W; < 0 & Y; =0,
and W, >0 Y, =1.

Now the joint probability density for Y, W, 3,6 and v is

v, w,8,6,v1x] = [WIX,gl[Ble]]Y W, 8] = [WIX, 8]18l6]v][Y W]
(WX, 8](818][]

= cpl{— > (w, — 5B b TT T2 18161 (2.11)

i=1 i=1j=1
For 1 <i < U(Zy, .. Zi or Xyeists oo X,
[Z|Y, W, X, 1<k<n—1,Z;,1<j<Lj+#1%7,5
e {“%(wf — (Bo + 252 }x”,aj))Z} I lv(j(zi)
" S [ b G T2 T T

(2.12)

where the summation is over all cases of X ’s.

[60|Y? W7X513j’j # 0,7]
. (rooug + S (wi — 50 25 6))

n+7’00

,(n + TOO)”1> (2.13)

andfor1<k<p-1,

[BL'YaW’XvﬁJa]-SJSp—]wJ#k,’ﬂ (214)
_N (Tkkﬂk + 30 za|w — Yk TiiBi — Bo) (Z 22 4 )" )

n 2
21 T+ Tk
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where N (a,b) denotes the normal density with mean a and variance b.
Finally, for 1 < k < m, [v|Y, X, 8,7;,j # k] is in the form of (2.10).
The implemetation of Gibbs sampler is briefly described in the following.

Step 1. Starting with initial guesses at [330), 1(0), . ,B,(,(l)l, Zl(o), o Z,(O),
O 7{9 simulate the W) from the truncated normal distribution.

Step 2. The usual Gibbs iteration is as folows:

For:=1,...,1,

zi(l) ~ [zi|Y,W(1),Xk, 1<k< n—-l,'y(o),ﬁ(o),Zj = z](p) for j > iand z](-l) for 3 < 1
and for k =0,...,p— 1,

B ~ B, WD X 1<k <01, 2 = 20,89 for j > kand BY for j < k)
and for k =1,...,m,

7,5_1) ~ [’7k|Y,W(1),Xk,1 <k<n-l,Z = 2(1)”3(1)’7](0) for j > k and 71(_1) for j < k.

The above two steps form an iteration which updates 8@, 4@ Z©) 1 ©) t¢
B, M ZzM WM, Thus ¢t such iterations produce a “one-string run”. Also,
n parallel strings are run with different starting positions to make sure that
the samples converge to the whole posterior distribution, instead of a local
maximum of the posterior distribution. For the logit model, W) from the
truncated normal in the step 1 is not needed.

2.3. Estimating the marginal posterior distributions

Let 8 = (Bo, - - -, Bp-1) be a parameter vector and let Z latent data possibly.
Let {(8%,..., ,(,”_)1),.2(”)},JG:1 be sample from posterior, that is, this Gibbs
output can be drawn from Gibbs sampler with full conditional densities in
(2.7) - (2.10) or (2.12) - (2.14).

For the probit model, since the full conditional densities in (2.13) and
(2.14) are in closed form, by Rao-Blackwellized estimation , 7(3;|Y) can be

estimated by
G

. 1 9 - (g
#(Bly) = 5 L (B8 g #,2). (215)
y:
But for the logit model, we can not use the Rao-Blackwellized estimation
in (2.15) because the full conditional densities in (2.8) and (2.9) are not in
closed form. Then, Gelfand and Smith(1990) suggested any smoothed kernel
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density estimator of 7(3;|Y) based on the Gibbs output {3 )},1 , for any
estimated marginal density of =(8;|Y). In this time, without using kernel
density estimation, we estimate the posterior marginal density =(8;|y) us-
ing the Monte Carlo method. The idea is very simple using the fact that
7(Bly)m(y) = 1(Bly)n(8) where I(Bly), m(y) and 7(3) are the sampling den-
sity, the marginal density of y and the (possibly improper) prior density of 3,
respectively. Let g(8) = I(B|y)n(3) and let ¢(3) be arbitrary density function.

We want to estimate the posterior marginal density, say #(8;|Y). First,
we evaluate the value of 7(3;]Y) at each point 8;. For fixed 3},

n(BY) = [w(8, 6 a1Y)dB
= [#(8.804Y) [ a(8i18-)aB.dB-
= [ [at1nTE L) 5 v )asas

(/Bl’ IY)
= //(I(ﬂ |5[ L]) (?’ﬂ[ t])) (ﬁivﬂ[—i]ly)dﬁidﬁ[—ﬂ
9(87,8%))
~ = e85, )———, (2.16)
where Bi_; = (Bo, - - Bi—1, Bit1s - - - ,B,-1) and ¢(B:]|B-:) is conditional den-

sity of 3; obtained from ¢(8o, ..., B:,- - -, Bp-1) and {8}, is Gibbs output.
The grid points 3; need not to be uniformly spaced. But the number of
points in the grid need be as large as possible on the support line. Choosing a
good function ¢ can be quite difficult. In some cases a reasonable choice of ¢
is to use a normal density whose mean and variance are based on the sample
mean and sample covariance of Gibbs output {8W, ..., W1}, Verdinelli and
Wasserman (1995) used the similar idea when computing the Bayes factor.

3. BAYESIAN NODEL CHOICE

In this section, we test the proposed model v.s. the model deleting the
incomplete data(see Vach and Schumacher, 1993) and also the logit and probit
models are compared using Bayes factor. In general, suppose that we are
interested in comparing two models My and M;. The formal Bayesian model
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choice procedure goes as follows. Let w, be the prior probability of M;,: = 0, 1
and let f(y|M,) be the predictive distribution for model M;, i.e.

ml. = £@iM) = [ 1(vl6, M)n(0.1M,)do,

If y is the observed data, then we choose the model yielding the larger
w; f(y|M;). Often we set w;, = 1 and compute the Bayes factor (or M, with
respect to M)

pr = WM [ml (3.1)

f(yI M) dh

Jeffreys(1961) and Kass and Raftery(1995) suggest interpretive ranges for
the Bayes factor and in general , M, is supported if BF > 1.

More generally, we want to estimate [m] = [ f(y|8)7(8)d3 using the
importance sampling method. Let us consider 7(3|y) as the importance
sampling function. Then the Markov Chain Monte Carlo methods, partic-
ularly Metropolis algorithm and Gibbs sampler, are used to get the sample
from the posterior density 7(8|y). Let {8% ;7:1 be Gibbs outputs as above.
Then by Monte Carlo method, the approximating marginal density of Y is

~ S wa S (y]8)) r(89)) . [(y18)7(8)
[m] = Frye where w, = Zrys. Since 7(8ly) = “mT > the
g1 "0 ’

approximation can be expressed as

[m] =

18 1 o
521 f(ylﬂ(”))} ' 42

Also, this final form is mentioned in Kass and Raftery(1995).

For example, suppose that we want to test the logit model (M) v.s. the
probit model (M;), then the approximating Bayes factor for favoring M, is
given by

= BT, LE8) (1= L3 g0)) 1]
(& S LS T B0 (1 = T 5 - 1)

where L(.) and II(.) denote the logistic cdf and standard Gaussian cdf, re-
spectively. In particular, for the case containing the missing data, they are
replaced by the Gibbs outputs corresponding to them into the approximating
BF in (3.3).

(3.3)

501
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4. ILLUSTRATIVE EXAMPLE

In this section, we shall consider Bayesian analysis, using the Gibbs sam-
pler, of logistic model. Ibrahim(1990) considered the study of 82 patients
who experienced translaryngeal intubation(TLI) for more than four days and
were prospectively evaluated for laryngeal complications in Table 4.1. At
the begining of study, data was collected on the patients regarding 13 base-
line explanatory variables (covariates) during the period of TLI. The reponse
variable (y) is dichotomized to 0 or 1, with 0 and 1 representing no dam-
age and damage of the larynx at baseline, respectively. Ibrahim(1990) used
only three covariates in his model, which correspond to the covariates with
the largest fraction of missing data. These three covariates consist of serum
albumin (z;), serum creatinine (z,) and the third variable (z3) which is the
ratio of laryngeal size to tracheal tube size. These are all dichotomous. Of
82 patients, there are 13 patients who have no answer as missing data. For
this data, Ibrahim(1990) introduced the method to find MLE in logistic model
with missing data using EM algorithm. Also we consider the regression model
Bo + 33_, Biz; used by Ibrahim(1990).

Table 4.1 TLI data

T 0 0 0 0 1 1 0 0 0o 0 1 1 1 . 1 . .0 0 1 1
Ty 0 0 1 1. 0 0 O 0 1 1. 0 0 1 0 1 1 o . 0 0 1
ry 0 1 0 1 1 0 O 1 ¢ 1 0 1 0 O . .0 . . .
y 0 0 o 0 0 0 1 1 1 1t 1 1 1 0O 1 1 1 1 1 1
F i0o 10 6 2 7 1 9 110 2 7 3 1 1 1 1 1 1 1t 1 2 1 4

where - and "F” denote a missing data and frequency, respectively.

In this case, N = 82,1 = 13,p = 4 and m = 8. Assume that the prior of 3
is noninformative, i.e. p =1, ¥"! =0andseta; = 1fori=1,...,8in(2.7).
For logit model, the Metropolis algorithm is applied to (2.8), (2.9) and (2.10).
But, for probit model, the Metropolis algorithm is only applied to (2.10)
because (2.13) and (2.14) have the explicit forms of their density functions.
For these cases using Metropolis algorithm, normal density function is used
as the derived function. Each convergence of Gibbs sampler and Metropolis
algorithm is checked using Gelman and Rubin’s(1992) method.

In Table 4.2, CD and CR denote the estimates of the posterior means
of 3,’s when deleting missing data and replacing missing data by random
variates, respectively. Figures 4.1 and 4.2 indicate the estimated densities of
3 in the logit and probit models, respectively. In particular, the graphs in
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figure 4.1 are sketched by the estimates in (2.16) after getting the normalizing
constants. Figure 4.2 is graphed by the Rao-Blackwellized estimates in (2.15)
since the full conditional densities of 8;’s are fully known. In Figures 4.1 and
4.2, the graphs of By, 81, B2 and (5 are denoted by solid, dotted, dashed and
long-dashed lines, respectively.

Next, we consider the logit model and then test the model M, v.s. the
model M, as follows;
My: the model f(y|B) replacing the incomplete data with the new variates
using data augmentation with normal prior.
V.S.
M, :the model f(y|8) deleting the incomplete data with normal prior.

[
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=
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beta
peta
Figure 4.1 logit model Figure 4.2 probit model

Then the Bayes factor for favoring M, is 2.3 x 102 and so for the given data,
the method M, is appropriate. Similarly for probit model, the approximate
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Bayes factor for favoring M, is 3.1 x 10°. Finally, we compare the logit
model(My) with the probit model(M;) and then the Bayes factor given by
(3.3) is 4.1 x 10® and so, the logit model is more appropriate than the probit

model for the given data.

Table 4.2 posterior Mean

Logit Probit
CD CR CD CR
Bo -0.1588 | 0.5308 | -0.0581 | -0.1000
(S.E.) | (0.2933) | (0.0661) | (0.2241) | (0.2511)
B -1.3677 | -1.0382 | -0.3789 | 0.0739
(S.E.) | (0.2271) | (0.2948) | (0.3622) | (0.4219)
B2 1.1691 0.8415 | 0.4135 | 0.3879
(S.E.) | (0.2172) | (0.2366) | (0.3739) | (0.3643)
B3 -0.1403 | 0.4964 | -0.0485 | 0.0198
(S.E.) | (0.1546) | (0.1172) | (0.3162) | (0.2756)
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