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Abstract
Penalized spline is a suitable nonparametric approach in estimating mean model in small area. However,

application of the approach in informative sampling in a published article is uncommon. We propose a semi-
parametric mixed-model using penalized spline under informative sampling to estimate mean of small area. The
response variable is explained in terms of mean model, informative sample effect, area random effect and unit
error. We approach the mean model by penalized spline and utilize a penalized spline function of the inclusion
probability to account for the informative sample effect. We determine the best and unbiased estimators for coeffi-
cient model and derive the restricted maximum likelihood estimators for the variance components. A simulation
study shows a decrease in the average absolute bias produced by the proposed model. A decrease in the root
mean square error also occurred except in some quadratic cases. The use of linear and quadratic penalized spline
to approach the function of the inclusion probability provides no significant difference distribution of root mean
square error, except for few smaller samples.
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1. Introduction

The need of reliable statistical information for sub-populations that are limited by the small size of
samples has led to the development of small area estimation methods, see for instance Molina et al.
(2014), Tzavidis et al. (2012), Clement (2014), Burgard et al. (2014) and Hwang and Kim (2015).
Small area estimation should be based on a model-based approach (Rao, 2003). In model-based
approach, the parametric assumption stating the relationship of response variables and auxiliary vari-
ables are often limited. Ruppert et al. (2003) studied semiparametric regression with an unspecified
mean function that assumed to be approximated sufficiently by a penalized spline (p-spline). They
obtained an empirically best linear unbiased predictor (EBLUP) using mixed-model formulation. Op-
somer et al. (2008) extended the results of Ruppert et al. (2003) to small area estimation that includes
the random area effect and obtained the EBLUP of mean of small area. Meanwhile, Rao et al. (2014)
applied the approach of Opsomer et al. (2008) to develop a robust EBLUP of means small area.
Opsomer et al. (2008) and Rao et al. (2014) involved p-spline in the context of a small area mixed-
model. However, they developed their semiparametric model-based approach to estimate small area
means under a noninformative sampling assumption in which standard inference procedures can be
applied.
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Complex sampling designs are often used to collect sample data. In a complex sampling design,
if the sample is informative, the model that is applied to the sample may be different from the model
used in the population. Therefore, a sample model in standard inference may produce a heavy bias.
Both Pfeffermann and Sverchkov (2007, 2009) and Burgard et al. (2014) stated that the informative
effect of the sample must be taken into account in the inference process to reduce bias.

Verret et al. (2015) in added a function of inclusion probability of unit j in area i, g(πi j) as a
covariate into the unit-level error regression model (Battese et al., 1988), to reduce the informative
effect on the prediction of small area mean. The selection of the g(πi j) function is done by first
plotting the residual model without the variable g(πi j) to g(πi j) function. The plot graph which tends
to be linear determines the g(πi j) chosen. Their approach to determine the g(πi j) function is applied
to a linear mixed-model. However, in non-linear models, the g(πi j) function may be difficult to be
determined because of the possibility of not obtaining the plot that tends to be linear.

We propose a predictive approach for small area means based on semiparametric mixed-model
using p-spline under informative sampling. We take into account the effects of informative sample
by adding a p-spline function of the inclusion probability to the model. Model performances were
measured using mean square error and absolute bias calculated by bootstrap method. We gave a sim-
ulation to evaluate the proposed predictor performance. This article is structured as follows. Section
1 gives the introduction. Section 2 give brief definition of population, sample and informative sam-
pling. We present our model in Section 3 where we define the model, derive estimator parameters; in
addition, we show the estimator properties of the coefficients model and assess model performance.
We present simulation study in Section 4. Summary of our paper is presented in Section 5.

2. Population, sample and informative sampling

Let U be a population of values x and y. U is partitioned into M clusters denoted by Ui, i = 1, . . . ,M
that are seen as small areas. Each cluster contains Ni unit elements. A sample of (xi j, yi j) of ni,
denoted as S i = {(xi j, yi j)| j = 1, . . . , ni; i = 1, . . . ,M}, is taken independently in each area i using
informative sampling. Pfeffermann and Sverchkov (2009) stated that informative sampling is a sam-
pling mechanism with the probability of inclusion that depends on the response variable. Referring
to Pfeffermann et al. (1998), mathematically the informative sampling conditions in the area i can be
explained as follows. Let Ii j denotes (Ni × 1) indicator variable such that Ii j = 1 if j ∈ S i and Ii j = 0
if j < S i. Suppose the population unit on area i, yi j ( j = 1, . . . ,Ni; i = 1, . . . ,M) is an independent
realization of a distribution with the probability of density expressed as fUi (yi j|xi j) dependent on the
concomitant xi j which may include auxiliary variables and design variables. The marginal probability
function of the sample yi in area i can be written using the Bayes theorem:

fS i (yi j|xi j) = fUi (yi j|xi j, j ∈ S i)
= fUi (yi j|xi j, Ii j = 1)

=
P(Ii j = 1|xi j, yi j). fUi (yi j|xi j)

P(Ii j = 1|xi j)
. (2.1)

If P(Ii j = 1|xi j, yi j) , P(Ii j = 1|xi j), then the sample probability function is different from the popula-
tion probability function. On this condition, the sampling design is called informative. Sample drawn
under informative sampling is called informative sample.
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3. Proposed model

Let the unit value of observation variable, yi j, can always be obtained and covariate variable unit, xi j, is
an univariate variable. The inclusion probability of unit j in the area i is denoted as πi j ( j = 1, . . . ,Ni,
i = 1, . . . ,M). Suppose the values of xi j and πi j known for every i and j. The variable yi j has a
correlation with xi j which is expressed in an unknown function g1(xi j). The random area effect, vi, is
also considered. The sample model is:

yi j = g1(xi j) + vi + ei j, j = 1, . . . , ni; i = 1, . . . ,M, (3.1)

with ei j is unit error. We assume ei j and vi j have a normal distribution with mean zero and variance σ2
e

and σ2
e respectively. Furthermore, we concern the informative sampling effects by adding an unknown

probability inclusion functions g2(πi j) into the model:

yi j = g1(xi j) + g2(πi j) + vi + ei j, j = 1, . . . , ni; i = 1, . . . ,M. (3.2)

We add the function of inclusion probability to the model based on the Pfeffermann and Sverchkov
(2009) affirmation that the inclusion probability is a rough summary that allows the design variables.
This statement provides an alternative way to overcome the effects of informative sampling in a model-
based approach, especially when it is encountered with a very complex or even unknown sampling
design.

We assume that function g1(xi j) and g2(πi j) in (3.2) are smooth, therefore it can be approached by
a p-spline function. The proposed sample model is:

yi j = β0 +

p∑
k=1

βk xk
i j +

K1∑
k=1

tk(xi j − qk)p
+ +

s∑
k=1

δkπ
k
i j +

K2∑
k=1

rk(πi j − Qk)s
+ + vi + ei j, (3.3)

for j = 1, . . . , ni; i = 1, . . . ,M where p and s are degrees of p-spline function for g1(xi j) and g2(πi j)
respectively. The coefficients of the parametric part and spline part for g1(xi j) are expressed se-
quentially as βk and tk. Meanwhile, δk and rk are for g2(πi j). Also, the followings were defined
(xi j − qk)p

+ = max(0, xi j − qk)p and (πi j − Qk)s
+ = max(0, πi j − Qk)s. Hereafter, qk and Qk are knots in

x and π respectively. Model (3.3) is defined for each area in the population. Let xxxi j = [1 xi j · · · xp
i j],

πππi j = [πi j π
2
i j · · · πs

i j], and zzz1i j = [(xi j − q1)p
+ · · · (xi j − qK1 )p

+], zzz2i j = [(πi j − Q1)s
+ · · · (πi j − QK2 )s

+].
By defining the following vectors, βββ = [β0 · · · βp]t, δδδ = [δ0 · · · δp]t, hhh1 = [t1 · · · tK1 ]t, and
hhh2 = [r1 · · · rK2 ]t, equation (3.3) can restated as

yi j = xxxi jβββ + πππi jδδδ + zzz1i jhhh1 + z2i jhhh2 + vi + ei j; j = 1, . . . , ni; i = 1, . . . ,M. (3.4)

Furthermore, by denoting col{ai}ni=1 as column matrix with element (a1, . . . , an) and diag{ai}ni=1 as
diagonal matrix with diagonal element (a1, . . . , an), we define matrices ZZZ1 = col({col({zzz1i j}ni

j=1)}Mi=1),
ZZZ2 = col({col({zzz2i j}ni

j=1)}Mi=1), ZZZ3 = diag({111ni }Mi=1), hhh3 = [v1 · · · vM]t, and eee = col({col({ei j}ni
j=1)}Mi=1).

Using all sample data, model (3.4) can be stated briefly in a matrix form:

yyy = XβXβXβ +ΠδΠδΠδ + ZhZhZh + e, (3.5)

where yyy = col({col({y1i j}ni
j=1)}Mi=1), XXX = col({col({xxx1i j}ni

j=1)}Mi=1), and ΠΠΠ = col({col({πππ1i j}ni
j=1)}Mi=1). Mean-

while, hhh =
[
hhht

1 hhht
2 hhht

3

]t
and ZZZ =

[
ZZZ1 ZZZ2 ZZZ3

]
are partition matrices. We assume also that matrix
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XXXnx(p+1) and ΠΠΠnxs have full column rank. Penalized spline fitting criteria after divided by σ2
eee , is equal

to best unbiased linear prediction criteria in mixed-model if hhh1 and hhh2 are considered as a set of ran-
dom coefficients with cov(hhh1) = σ2

hhh1
IIIK1 and cov(hhh2) = σ2

hhh2
IIIK2 . In our case, parameters of smoothing

p-spline fulfill λ2
1 = σ

2
eee/σ

2
hhh1

and λ2
2 = σ

2
eee/σ

2
hhh2

. We assume that hhh1 and hhh2 independently and identically
normal distribution around zero with a certain variance. In brief, least square problem in p-spline in
this paper is equivalent to best unbiased prediction problem in (3.5). Let GGGk = σ

2
hhhk

IIIKk for k = 1, 2, 3
where K3 = M. The model involves functions which are mixture of fixed parameters in βββ and δδδ
and linear function for random quantity in hhh1,hhh2,hhh3, where hhhk

iid∼ N(0, σ2
hhhk

IIIKk ), for k = 1, 2, 3 and

eee iid∼ N(0, σ2
eeeIIIn).

3.1. Estimator of coefficient vector

Estimators for βββ, δδδ and predictors for hhh can be obtained simultaneously through Henderson mixed-
model equation. By defining ZZZ4 = IIIn,GGG4 = σ

2
hhh4

IIIK4 , where hhh4 = eee, and K4 = n (n =
∑M

i=1 ni), variance
of yyy can be written as

VVV =
4∑

k=1

ZZZkGGGkZZZt
k, (3.6)

VVV is a diagonal matrix so VVV is symmetric. Subsequently, by assuming (yyy|hhh) ∼ N(XβXβXβ+ΠδΠδΠδ+ZhZhZh,GGG4), the
conditional density for y with given hhh can be written as f (yyy|hhh) ≈ exp{−(1/2)(yyy − XβXβXβ −ΠδΠδΠδ − ZhZhZh)tGGG−1

4 (yyy−
XβXβXβ −ΠδΠδΠδ − ZhZhZh)}. The joint density for yyy and hhh can be obtained using formula f (yyy,hhh) = f (yyy|hhh) f (hhh) =
f (yyy|hhh) f (hhh1) f (hhh2) f (hhh3). The joint density function f (yyy,hhh) is then maximized against βββ, δδδ, hhh1, hhh2, hhh3
through its logarithm function to get the following Henderson mixed-model equation,


XXXtXXX XXXtΠΠΠ XXXtZ1Z1Z1 XXXtZ2Z2Z2 XXXtZ3Z3Z3
ΠΠΠtXXX ΠΠΠtΠΠΠ ΠΠΠtZ1Z1Z1 ΠΠΠtZ2Z2Z2 ΠΠΠtZ3Z3Z3
Z1Z1Z1

tXXX Z1Z1Z1
tΠΠΠ Z1Z1Z1

tZ1Z1Z1 + λ
2
1IIIK1 Z1Z1Z1

tZ2Z2Z2 Z1Z1Z1
tZ3Z3Z3

Z2Z2Z2
tXXX Z2Z2Z2

tΠΠΠ Z2Z2Z2
tZ1Z1Z1 Z2Z2Z2

tZ2Z2Z2 + λ
2
2IIIK2 Z2Z2Z2

tZ3Z3Z3
Z3Z3Z3

tXXX Z3Z3Z3
tΠΠΠ Z3Z3Z3

tZ1Z1Z1 Z3Z3Z3
tZ2Z2Z2 Z3Z3Z3

tZ3Z3Z3 + λ
2
3IIIM



βββ
δδδ
hhh1
hhh2
hhh3

 =

XXXtyyy
ΠΠΠtyyy
Z1Z1Z1

tyyy
Z2Z2Z2

tyyy
Z3Z3Z3

tyyy

 , (3.7)

where λ2
3 = σ

2
eee/σ

2
hhh3
. Let JJJ is the invers of coefficient matrix on equation (3.7) with JJJbb is the element

in the bth row and bth column in matrix JJJ. The solution of (3.7) leads to an estimators for the model
coefficient parameters, that is


β̂ββ

δ̂δδ

ĥhh1

ĥhh2

ĥhh3


=


UUU t

1yyy
UUU t

2yyy
UUU t

3yyy
UUU t

4yyy
UUU t

5yyy

 , (3.8)

where, UUU t
1 = JJJ11XXXt+JJJ12ΠΠΠ

t+JJJ13Z1Z1Z1
t+JJJ14Z2Z2Z2

t+JJJ15Z3Z3Z3
t, UUU t

2 = JJJ21XXXt+JJJ22ΠΠΠ
t+JJJ23Z1Z1Z1

t+JJJ24Z2Z2Z2
t+JJJ25Z3Z3Z3

t, UUU t
3 =

JJJ31XXXt + JJJ32ΠΠΠ
t + JJJ33Z1Z1Z1

t + JJJ34Z2Z2Z2
t + JJJ35Z3Z3Z3

t, UUU t
4 = JJJ41XXXt + JJJ42ΠΠΠ

t + JJJ43Z1Z1Z1
t + JJJ44Z2Z2Z2

t + JJJ45Z3Z3Z3
t, and

UUU t
5 = JJJ51XXXt + JJJ52ΠΠΠ

t + JJJ53Z1Z1Z1
t + JJJ54Z2Z2Z2

t + JJJ55Z3Z3Z3
t.
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3.2. Properties of estimator of coefficient vector

Properties of (3.8) are derived in line with the ideas of Rao et al. (2014). By writing[
XXX ΠΠΠ ZZZ1 ZZZ2 ZZZ3

]t [
XXX ΠΠΠ ZZZ1 ZZZ2 ZZZ3

]
as JJJ−1 − diag

[
000 000 λ2

1IIIK1 λ2
2IIIK2 λ2

3IIIM

]
thus, 

UUU t
1

UUU t
2

UUU t
3

UUU t
4

UUU5


[
XXX ΠΠΠ ZZZ1 ZZZ2 ZZZ3

]
= JJJ

(
JJJ−1 − diag

[
000 000 λ2

1IIIK1 λ2
2IIIK2 λ2

3IIIM

])
. (3.9)

From (3.8) and (3.9) we may obtain E(β̂ββ) = UUU t
1(XβXβXβ + ΠδΠδΠδ) = βββ and E(δ̂δδ) = UUU t

2(XβXβXβ + πδπδπδ) = δδδ which
show that β̂ββ and δ̂δδ are unbiased, respectively. Likewise, E(ĥhh1−hhh1) = UUU t

3(XβXβXβ+ΠδΠδΠδ)−000 = 000, E(ĥhh2−hhh2) =
UUU t

4(XβXβXβ + ΠδΠδΠδ) − 000 = 000, E(ĥhh3 − hhh3) = UUU t
5(XβXβXβ + ΠδΠδΠδ) − 000 = 000 which also show that ĥhh1, ĥhh2, and ĥhh3 are

unbiased, respectively.
Because V(yyy|βββ,δδδ,hhh2,hhh3) = ZZZ1GGG1ZZZt

1 +GGG4 and E(yyy|βββ,δδδ,hhh2,hhh3) = XXXβββ +ΠΠΠδδδ +ZZZ2hhh2 +ZZZ3hhh3, and using
relation E(a|b) = E(a) + cov(a, b).V(b)−1(b − E(b)), we get

E (hhh1|(yyy|βββ,δδδ,hhh2,hhh3)) =GGG1ZZZt
1

(
ZZZ1GGG1ZZZt

1 +GGG4

)−1
(yyy − XXXβββ −ΠΠΠδδδ − ZZZ2hhh2 − ZZZ3hhh3) .

Meanwhile, using the third row of (3.7) we also obtain

ĥhh1 =GGG1ZZZt
1

(
ZZZ1GGG1ZZZt

1 +GGG4

)−1 (
yyy − XXXβ̂ββ −ΠΠΠδ̂δδ − ZZZ2ĥhh2 − ZZZ3ĥhh3

)
.

It is proven that ĥhh1 = E(hhh1|(yyy|β̂ββ, δ̂δδ, ĥhh2, ĥhh3)). Thus ĥhh1 is the best predictor for hhh1. The best predictor
properties of ĥhh2 and ĥhh3 are proven similarly.

3.3. Estimation of variance components

We estimate the variance components σ2
hhhk
, for k = 1, 2, 3, 4 by using restricted maximum likelihood

(REML) method which was first stated by Patterson and Thompson (1971). This estimation is based
on linear combination of element yyy, namely KKKtyyy, chosen as such that KKKtyyy does not contain fixed
effect, that is KKKtXXX = 000 and KKKtΠΠΠ = 000. We first determine KKKt, construct REML equation by maximize
the likelihood function of KKKt to σ2

hhhk
, (k = 1, 2, 3, 4), and solving the REML equation to get REML

estimator of σ2
eee and σ2

hhhk
.

3.3.1. Determine KKKt

We determine the matrix KKKt by first rewriting fixed effects in (3.5) in partition matrices form, that is
yyy = [XXX ΠΠΠ]

[
βββt δδδt

]t
+

∑3
k=1 ZZZkhhhk + eee. Suppose KKKt is as such, thus [KKKtXXX KKKtΠΠΠ] = KKKt[XXX ΠΠΠ] = [000 000].

Eligible KKKt can be determined as:

KKKt = III −
[
XXX ΠΠΠ

] ([XXXt

ΠΠΠt

] [
XXX ΠΠΠ

])−1 [
XXXt

ΠΠΠt

]
. (3.10)
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By developing matrix inverse on (3.10) we have

KKKt = MMM −MMMXXX
(
XXXtMMMXXX

)−1
XXXtMMM, (3.11)

where MMM = III −ΠΠΠ(ΠΠΠtΠΠΠ)−1ΠΠΠt. It is easy to prove that MMM and KKKt are idempotent and symmetric matrix.
Another form of KKKt is KKKt = (MMM −MMMΠΠΠ(ΠΠΠtMMMΠΠΠ)−1ΠΠΠtMMM) with MMM = III − XXX(XXXtXXX)−1XXXt.

3.3.2. REML equation

Furthermore, REML equation will be formed by first establishing likelihood function for KKKtyyy. By
assuming yyy ∼ N(XXXβββ + ΠΠΠδδδ,VVV) thus KKKtyyy ∼ N(000,KKKtVVVKKK), the likelihood function for KKKtyyy can be stated
as L ≈ (|KKKtVVVKKK|)−1/2e−(1/2)yyytKKK(KKKtVVVKKK)−1KKKtyyy. By maximizing the logarithm function of L on σ2

hk
, for k =

1, 2, 3, 4, we obtain the REML equation in trace matrix:

tr

PPP ∂VVV
∂σ2

hk

 = yyytPPP
∂VVV
∂σ2

hk

PPPyyy, (3.12)

with PPP = KKK(KKKtVVVKKK)−1KKKt. It is clear that PPP is a idempotent and symmetric matrix. Considering
∂VVV/∂σ2

hk
= ZZZkZZZt

k for k = 1, 2, 3, 4, the REML equation (3.12) can be restated:

col
{
tr

(
PPPZZZkZZZt

k

)}4

k=1
= col

{
yyytPPPZZZkZZZt

kPPPyyy
}4

k=1

that is equivalent to

tr(PPP) = yyytPPP2yyy, for k = 4 (3.13)

and

tr
(
PPPZZZkZZZt

k

)
= yyytPPPZZZkZZZt

kPPPyyy, for k = 1, 2, 3. (3.14)

3.3.3. REML estimator of σ2
eee

Estimator for variance of error can be obtained by first multiplying (3.14) with σ2
hhhk

and then adding
for k = 1, 2, 3. We get

tr

PPP 3∑
k=1

σ2
hk

ZZZkZZZt
k

 = yyytPPP
3∑

k=1

σ2
hk

ZZZkZZZt
kPPPyyy. (3.15)

Then from (3.15) by considering
∑3

k=1 σ
2
hhhk

ZZZkZZZt
k = VVV − σ2

hhh4
ZZZ4ZZZt

4, PPPVVVPPP = PPP and (3.13), we can write

tr(PPPVVV) = yyytPPPyyy. (3.16)

We used the following theorem stated in Rencher and Schaalje (2008) to develop (3.16).

Theorem 1. If A is symmetric and idempotent matrix of rank r, then rank(A) = tr(A) = r.

The left hand side of (3.16) described as follows. VVV is diagonal matrix with full rank, therefore

rank(PVPVPV) = rank(PPP)

= rank
(
KKK

(
KKKtKKK

)−1
KKKt

)
= rank

(
KKKt

)
. (3.17)
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Because PVPPVPPVP = PPP we get PVPVPVPVPVPV = PVPVPV in other word, PVPVPV is idempotent. Furthermore,

(PVPVPV)t = VVV tPPPt

= VVVPPP (because PPP and VVV are symmetric)

= PPP−1PPPVVVPPP

= III (because PVPPVPPVP = PPP).

Because III is symmetric, we can get (PVPVPV)t = PVPVPV , in other word PVPVPV is symmetric. By using Theorem
(1) and (3.17), we can write the left hand side of (3.16) as:

tr(PVPVPV) = rank(PVPVPV)
= rank(KKKt). (3.18)

Matrix MMM is idempotent and symmetric so that MMMXXX(XXXtMMMXXX)−1XXXtMMM idempotent and symmetric, there-
fore by theorem (1), rank(MMMXXX(XXXtMMMXXX)−1XXXtMMM) = tr(MMMXXX(XXXtMMMXXX)−1XXXtMMM). Matrix ΠΠΠnxs has full column
rank. Using (3.11), equation (3.18) becomes

tr(PVPVPV) = rank(MMM) − rank
(
MMMXXX

(
XXXtMMMXXX

)−1
XXXtMMM

)
= n − s − tr

(
MMMXXX

(
XXXtMMMXXX

)−1
XXXtMMM

)
. (3.19)

We describe the right hand side of (3.16) by first rewriting PPP in the following theorem.

Theorem 2. If KKKtXXX = 000 and KKKtΠΠΠ = 000 and VVV is a positive definite matrix, then

KKK
(
KtVKKtVKKtVK

)−1
KKKt = PPP, (3.20)

with PPP ≡ MMM∗ −MMM∗XXX(Xt M∗XXt M∗XXt M∗X)−1XXXtMMM∗ and MMM∗ = VVV−1 −VVV−1ΠΠΠ(ΠΠΠtVVV−1ΠΠΠ)−1ΠΠΠtVVV−1.

Proof: It is clear that VVV is symmetric, nonsingular with full rank. Consequently, symmetric matrix
VVV1/2 always exists as such so that VVV = (VVV1/2)2. We can obtain (VVV1/2KKK)tVVV−1/2XXX = 000 and (VVV1/2KKK)tVVV−1/2ΠΠΠ

= 000 as a result of KKKtXXX = 000 dan KKKtΠΠΠ = 000. Applying Searle’s idea in our case, KKK replaced with VVV1/2KKK,
XXX with VVV−1/2XXX and ΠΠΠ with VVV−1/2ΠΠΠ in the equation KKK(KKKtKKK)−1KKKt = KKKt (Searle, 1982). By multiplying
VVV−1/2 on the left and right sides, we get

KKK
(
KKKtVVVKKK

)−1
KKKt = MMM∗ −MMM∗XXX

(
XXXtMMM∗XXX

)−1
XXXtMMM∗ ≡ PPP, (3.21)

where MMM∗ = VVV−1 − VVV−1ΠΠΠ(ΠΠΠtVVV−1ΠΠΠ)−1ΠΠΠtVVV−1 and VVV−1 is the matrix inverse of variance yyy. Let DDD =
diag({GGGk}3k=1), we get

VVV−1 =GGG−1
4 −GGG−1

4 ZZZ
(
ZZZ
′
GGG−1

4 ZZZ +DDD−1
)−1

ZZZ
′
GGG−1

4 . (3.22)

�

An alternative for PPP is PPP ≡ MMM∗∗−MMM∗∗ΠΠΠ(Πt M∗∗ΠΠt M∗∗ΠΠt M∗∗Π)−1ΠΠΠtMMM∗∗ where MMM∗∗ = VVV−1−VVV−1XXX(XXXtVVV−1XXX)−1XXXt

VVV−1 using KKKt = (MMM −MMMΠΠΠ(ΠΠΠtMMMΠΠΠ)−1ΠΠΠtMMM). The matrix ĥhh may be stated as:

ĥhh =
(
ZZZtGGG−1

4 ZZZ +DDD−1
)−1

ZZZtGGG−1
4

(
yyy − XXXβ̂ββ −ΠΠΠδ̂δδ

)
, (3.23)
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obtained using third, fourth, and fifth row of (3.7) with βββ and δδδ in place of β̂ββ and δ̂δδ respectively.
Substituting ĥhh to the first and second row of equation (3.7) and considering (3.22), resulting in the
following equation,

XXXtVVV−1XXXβ̂ββ + XXXtVVV−1ΠΠΠδ̂δδ = XXXtVVV−1yyy, (3.24)

ΠΠΠtVVV−1XXXβ̂ββ +ΠΠΠtVVV−1ΠΠΠδ̂δδ = ΠΠΠtVVV−1yyy. (3.25)

By substituting β̂ββ from (3.25) into (3.24), and using PPP in Theorem 2, we get

VVVPPPyyy =
(
yyy − XXXβ̂ββ −ΠΠΠδ̂δδ

)
. (3.26)

By using (3.19), (3.26) and relation PPPVVVPPP = PPP, we can write equation (3.16) as:

n − s − tr
(
MMMXXX

(
XXXtMMMXXX

)−1
XXXtMMM

)
= yyytPPPVVVVVV−1VVVPPPyyy. (3.27)

Substituting (3.22) in (3.27), the right-hand side of (3.27) becomes GGG−1
4 yyyt(yyy − XXXβ̂ββ −ΠΠΠδ̂δδ −ZZZĥhh) where ĥhh

as showed in (3.23) and GGG−1
4 = σ

−2
eee IIIn. Thus, we can determine the estimator for σ2

eee :

σ̂2
eee =

yyyt
(
yyy − XXXβ̂ββ −ΠΠΠδ̂δδ − ZZZĥhh

)
n − s − w

, (3.28)

where w = tr(MMMXXX(XXXtMMMXXX)−1XXXtMMM).

3.3.4. REML estimator of σ2
hhhk

We determine estimator for σ2
hhhk

, where k = 1, 2, 3 using approach in Searle et al. (2006). Take
ZZZ = 000 in VVV then substitute it into PPP in (3.20) to get SSS = MMM∗ − MMM∗XXX(X′M∗XX′M∗XX′M∗X)−1XXXtMMM∗ with MMM∗ =
GGG−1

4 −GGG−1
4 ΠΠΠ(ΠΠΠtGGG−1

4 ΠΠΠ)−1ΠΠΠtGGG−1
4 .Matrix PPP can be stated in SSS as PPP = SSS −SSSZZZ(DDD−1 +ZZZ

′
SSSZZZ)−1ZZZ

′
SSS and can

be rewritten:

PPP = SSS − S ZDTS ZDTS ZDTZZZtSSS , (3.29)

with TTT = (III + ZZZtSSSZZZDDD)−1. Let FFFkk is defined as DDD with identity element in σ2
k and 000 in σ2

j ; j , k.
Therefore DDDFFFkk = σ

2
hk

FFFkk or

FFFkk =
DDDFFFkk

σ2
hk

, k = 1, 2, 3. (3.30)

Using (3.29) and (3.30), the left-hand side of (3.14) can be stated:

tr
(
PPPZZZkZZZt

k

)
= tr

FFFkk − TTTFFFkk

σ2
hk

 . (3.31)

We obtain DDDZZZtVVV−1 = (DDD−1 + ZZZtGGG−1
4 ZZZ)−1ZZZtGGG−1

4 . Then by using (3.23) and (3.26) we get

DDDZZZtPPPyyy = DDDZZZtVVV−1VVVPPPyyy

= ĥhh (3.32)
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Substituting (3.30) and (3.32) on the right-hand side of (3.14), we obtain

yyytPPPZZZiZZZt
iPPPyyy =

ĥhh
t
kĥhhk

σ4
hk

. (3.33)

Equation (3.31) and (3.33) are substituted into (3.14) to obtain estimator for σ2
hk

, k = 1, 2, 3, that is

σ̂2
hk
=

ĥhh
t
kĥhhk

tr (FFFkk − TTTFFFkk)
; k = 1, 2, 3. (3.34)

The REML estimator for variance components is obtained using (3.28) and (3.34):

σ̂2(b+1)
eee =

yyyt
(
yyy − XXXβ̂ββ −ΠΠΠδ̂δδ − ZZZĥhh

)
n − s − w

, (3.35)

σ̂2(b+1)
h1

=
ĥhh

t(b)
1 ĥhh

(b)
1

K1 − tr(TTT 11)
, (3.36)

σ̂2(b+1)
h2

=
ĥhh

t(b)
2 ĥhh

(b)
2

K2 − tr(TTT 22)
, (3.37)

σ̂2(b+1)
h3

=
ĥhh

t(b)
3 ĥhh

(b)
3

m − tr(TTT 33)
, (3.38)

where TTT kk is the element in the kth row and kth column in matrix TTT . Equations (3.35), (3.36), (3.37),
and (3.38) are counted with the following iterative process: (i) determine initial value θθθ(0) for θθθ =
(σ2

hhh1
, σ2

hhh2
, σ2

hhh3
, σ2

eee); (ii) calculate βββ(0), δδδ(0), hhh(0)
1 , hhh(0)

2 , and hhh(0)
3 using θθθ(0) in (3.8) and eee(0) = yyy − XβXβXβ(0) +

ΠδΠδΠδ(0) + ZhZhZh(0); (iii) calculate right-hand side of (3.35) to (3.38) using the result in (ii) to get updated
value of θθθ(1); (iv) repeat step (iii) until θ̂θθ = (σ̂2

hhh1
, σ̂2

hhh2
, σ̂2

hhh3
, σ̂2

eee) convergent. The obtained value θ̂θθ is then
used in (3.8) to obtain estimators β̂ββ, δ̂δδ, ĥhh1, ĥhh2, ĥhh3.

3.4. Predictor of mean and performance model

The prediction for mean of ith small area is calculated:

µ̂i =
1
Ni

∑i∈S i

yi j +
∑
i∈S̄ i

ŷi j

 , (3.39)

where S i and S̄ i are consecutively state sample unit sets and non-sample unit sets in area-i and ŷi j =

xxxi jβ̂ββ + πππi jδ̂δδ + zzz1i jĥ̂ĥh1 + zzz2i jĥ̂ĥh2 + v̂i is the predictor of yi j for j ∈ S̄ i using the proposed model.
We apply the bootstrap procedure stated by Rao et al. (2014) to get conditional bootstrap esti-

mation for root mean square error (RMSE) and absolute bias (AB) for µ̂i. The steps are: (i) gen-
erate hhh∗3 = [v∗t1 · · · v∗tM]t and eee∗ with hhh∗3 ∼ N(000, σ̂2

hhh3
IIIM) and eee∗ ∼ N(000, σ̂2

eeeIIIn); (ii) calculate response
y∗i j = xxxi jβ̂ββ + πππi jδ̂δδ + zzz1i jĥ̂ĥh1 + zzz2i jĥ̂ĥh2 + v∗i + e∗i j for j = 1, . . . ,Ni, i = 1, . . . ,M; (iii) calculate bootstrap
estimation for β̂ββ

∗
, δ̂δδ
∗
, ĥ̂ĥh∗1, ĥ̂ĥh∗2, v∗i by using sample data (y∗i j, xxxi j, πππi j) for j ∈ si and i = 1, . . . ,M; (iv)

calculate predictive values for non-sample areas using ŷ∗i j = xxxi jβ̂ββ
∗
+ πππi jδ̂δδ

∗
+ zzz1i jĥ̂ĥh∗1 + zzz2i jĥ̂ĥh∗2 + v∗i ; for

j ∈ s̄i; (v) calculate empirical bootstrap prediction for Ȳi with µ̃∗i = (1/Ni){
∑

j∈si y∗i j +
∑

j∈s̄i ŷ∗i j}; and
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bootstrap population mean with Ȳ∗i = (1/Ni)
∑ j=Ni

j=1 yi j; (vi) repeat step (i) to (v) B times; (vii) calculate
RMSE and AB for bootstrap estimator for µ̃i: RMSEboot(µ̃i) = {(1/B)

∑B
b=1{µ̃∗i (b) − Ȳ∗i (b)}2}1/2, and

ABboot(µ̃i) = (1/B)
∑B

b=1 |µ̃∗i (b) − Ȳ∗i (b)|.

4. Simulation study

Let the population be partitioned into 20 small areas of Ni size that are determined randomly in inter-
val [800, 1000], that is Ni = {945, 886, 984, 838, 997, 841, 972, 985, 865, 947, 952, 919, 856, 889, 905,
806, 979, 833, 926, 875}. We generated the population data yi j for bth simulation (b = 1, . . . , 1000) by
the following linear and quadratic model, respectively:

linear case: y(b)
i j = 1 + xi j + v(b)

i + e(b)
i j ; i = 1, . . . , 20; j = 1, . . . ,Ni, (4.1)

and

quadratic case : y(b)
i j = 1 + xi j + x2

i j + v(b)
i + e(b)

i j ; i = 1, . . . , 20; j = 1, . . . ,Ni, (4.2)

where xi j
iid∼ N(1, 2), vi

iid∼ N(0, 1), and ei j
iid∼ N(0, 1.5). The values of xi j was fixed for each run of

bth simulation. The sample size ni vary by 5, 10, and 15 for every area i. The sample data was drawn
based on unequal inclusion probability determined by πi j = n(di j/

∑20
i=1 di j) without replacement. The

size variable di j was Asparouhov’s size measure classified in invariant (I) and non invariant (NI) type.
The invariant type was independent of the random area effect vi j, in contrast to non-invariant. We set
the weight as 1 and stated both in a row:

di j =
(
1 + exp

(
−

(
α−1ei j +

√
1 − α−2e∗i

)))−1
,

for invariant, and

di j =
(
1 + exp

(
−

(
α−1

(
ei j + vi

)
+
√

1 − α−2 (
e∗i + v∗i

))))−1
,

for non invariant, Asparouhov (2006). Notation α denoted the level of informative effect. Increasing
the α’s values indicated decreasing informative effect. We observed α for 1, 2, 3, or ∞, with α = ∞
indicated the sampling was non informative. The error unit e∗i

iid∼ N(0, 1.5) and random effect v∗i
iid∼

N(0, 1) were generated independently of ei j and vi. The samples size ni varies 5, 10, and 15 in each
area.

The location of kth knots of x was determined by quantile formula:

qk =

(
k + 1

K1 + 2

)th

sample quantile of the unique xi,

for k = 1, . . . ,K1 with K1 = min(1/4 × number of unique xi j, 35), as stated by Ruppert et al. (2003).
The knots Qk (k = 1, . . . ,K2) for π was obtained analogously. Succinctly, in this simulation we used
a linear and quadratic p-spline approach for g1(xi j) and g2(πi j) which were used on (3.3) or (3.1).
The (3.1) model did not account for informative effect. This model was used as a comparison for the
proposed (3.3) model to observe the effect of the addition of function g2(πi j) to the model performance.
Two cases of the population were constructed using (4.1) and (4.2), where samples were taken with the
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Table 1: Models for simulation

Population of yi j Model approach Degree of p-spline Model notationg1(xi j) g2(πi j)
yi j = 1 + xi j + vi + ei j yi j = g1i j + g2i j + vi + ei j 1 1 M1
yi j = 1 + xi j + vi + ei j yi j = g1i j + g2i j + vi + ei j 1 2 M2
yi j = 1 + xi j + x2

i j + vi + ei j yi j = g1i j + g2i j + vi + ei j 2 1 N1
yi j = 1 + xi j + x2

i j + vi + ei j yi j = g1i j + g2i j + vi + ei j 2 2 N2
yi j = 1 + xi j + vi + ei j yi j = g1i j + vi + ei j 1 - R1
yi j = 1 + xi j + x2

i j + vi + ei j yi j = g1i j + vi + ei j 2 - R2

Table 2: The values of AB and RMSE of model M1 and R1 over 20 areas for linear case

Performance
α

Size Model M1 Model R1
measure measure ni = 5 ni = 10 ni = 15 ni = 5 ni = 10 ni = 15

AB

1 I 0.1451 0.7779 0.7920 1.0919 1.2184 1.1706
NI 0.1387 0.5907 0.5884 0.7628 1.0047 0.9332

2 I 0.1725 0.6744 0.7075 0.6175 1.1499 1.0318
NI 0.1425 0.7191 0.8323 1.3266 1.1541 1.1335

3 I 0.1486 0.6370 0.9154 1.3397 1.0592 1.0012
NI 0.1505 0.7312 0.5961 0.9592 1.0086 1.0429

∞ I 0.7684 0.6841 0.6858 1.0403 1.2914 1.1369
NI 0.5741 0.6146 0.7890 1.0649 0.8701 1.0868

RMSE

1 I 0.1842 1.2694 1.3022 1.3196 1.4631 1.4065
NI 0.1837 0.9484 0.9616 0.9268 1.2084 1.1231

2 I 0.2102 1.0879 1.1480 0.7525 1.3820 1.2395
NI 0.1806 1.1610 1.3669 1.6024 1.3875 1.3630

3 I 0.1828 1.0185 1.4941 1.6166 1.2754 1.2031
NI 0.1800 1.1812 0.9543 1.1578 1.2157 1.2531

∞ I 1.2126 1.0892 1.1128 1.2583 1.5512 1.3626
NI 0.8893 0.9638 1.2853 1.2868 1.0508 1.3067

AB = average absolute bias; RMSE = average root mean square error; α = the level of informative effect; I = invariant; NI
= non invariant; ni = sample size; M1 = model (3.3) with linear p-spline for g1(xi j) and g2(πi j); R1 = model (3.1), M with
linear p-spline for g1(x ji).

inclusion probability determined by the size of invariant (I) and non-invariant (NI). We summarized
the models in Table 1.

Values of AB and RMSE were calculated based on B = 1,000 bootstrap samples. The average
absolute bias (AB) and average RMSE (RMSE) over 20 areas were provided. Table 2 reports the
simulation results of AB and RMSE over 20 areas for linear case produced by M1 and R1, for each
level of informative effect and sample size taken. As indicated in Table 2, overall, M1 produced a
smaller AB than that of the R1. The average bias in the simulated linear case can be reduced by
adding the linear p-spline function of the inclusion probability into the semiparametric model. The
minimum value of AB for each sample size in a non-invariant case produced by M1 (0.1387 for
n = 5; 0.5907 for n = 10 and 0.5888 for n = 15) occurred in a very informative sample (α = 1). In
the invariant case, as the sample size increased, the minimum AB occurred in a sample with lower
level of informative effect (0.145 on α = 1, n = 5; 0.6370 on α = 2, n = 10; and 0.6858 on α = 3,
n = 15). The RMSE values generated by M1 were smaller than those generated by R1 except in non-
invariant case with n = 15, the RMSE value produced by M1 was slightly higher by 0.0039(α = 2)
and 0.291(α = 2) than that was produced by R1.

Table 3 reports the finding in the quadratic case that also indicates the values of AB and RMSE
resulted by N1 and R2 for each level of informative effect and sample size taken. N1 produced AB
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Table 3: The values of AB and RMSE of model N1 and R2 over 20 areas for quadratic case

Performance
α

Size Model N1 Model R2
measure measure ni = 5 ni = 10 ni = 15 ni = 5 ni = 10 ni = 15

AB

1 I 0.1989 0.9478 0.9736 1.0859 1.5856 1.1425
NI 0.2073 0.7667 0.6582 1.2789 0.9780 1.0293

2 I 0.1856 0.7285 0.9141 1.4075 1.1320 1,0413
NI 1.1068 0.6720 0.9196 1.4257 1.1535 1.1089

3 I 0.1805 0.7114 0.8928 1.3245 1.3317 0.9857
NI 0.6943 0.2539 0.9659 1.0105 1.0548 1.1109

∞ I 0.1921 0.6795 0.8530 1.4694 1.2659 1.1131
NI 0.1841 0.7612 0.9910 1.0421 1.5992 1.0670

RMSE

1 I 0.3430 1.4895 1.3653 1.3129 1.8246 1.3791
NI 0.3538 1.1973 0.9487 1.4388 1.1812 1.2182

2 I 0.3217 1.2232 1.2859 1.5287 1.3658 1.2490
NI 1.4027 1.1113 1.2944 1.7009 1.3870 1.3392

3 I 0.3227 1.1057 1.2595 1.6002 1.5465 1.1878
NI 0.9370 0.3611 1.3614 1.2112 1.2581 1.3253

∞ I 0.3354 1.0175 1.1938 1.6825 1.5273 1.3409
NI 0.3267 1.1591 1.3912 1.2641 1.7663 1.2870

AB = average absolute bias; RMSE = average root mean square error; α = the level of informative effect; I = invariant; NI
= non invariant; ni = sample size; N1 = model (3.3) with quadratic p-spline for g1(xi j) and linear p-spline for g2(πi j); R2 =
model (3.1) with quadratic p-spline for g1(xi j).

values that were smaller than those produced under R2 for each sample size and the level of the
informative sample. The average bias in the simulated quadratic case can be reduced by adding the
linear p-spline function of the inclusion probability into the semiparametric model. The minimum
value of AB occurred in samples that were less informative in invariant type sizes as the sample size
increased. In invariant type sizes, as the sample size increased, the minimum value of AB occurred in
samples that were less informative (0.1805 for 4α = 3, n = 5) and non informative sample (0.6795 for
n = 10 and 0.8530 for n = 15); conversely, in non-invariant cases (0.1841 for α = ∞, n = 5; 0.253 for
α = 3, n = 10 and 0.6582 for α = 1 and n = 5). As sample sizes increased, a minimum AB value was
obtained in more informative samples (0.1841 for α = ∞, n = 5; 0.2539 for α = 3, n = 10 and 0.1841
for α = 1, n = 15). N1 also yielded a value of RMSE higher than R2 in five simulation cases in Table
3. A RMSE difference of 0.0161 occurred in a sample size of 10 with non-invariant type measure and
α = 1.Meanwhile, a RMSE difference of 0.0369 (α = 2) and 0.0717 (α = 3) in the sample of 15 with
invariant measure size, and respectively 0.0361 (α = 3) and 0.1042 (α = ∞) for non invariant cases.

We examine if the order of p-spline approach for g2(πi j) in the model will result in different
estimators. Graphically, we do this by comparing distribution of RMSE of each p-spline degree, by
considering size measure and level of informative sample (α = 1, 2, 3). The comparison is done for
both population cases. Figure 1 shows a comparison of the distribution of RMSE values generated
by M1 and M2 in the case of linear population yi j while Figure 2 indicates for the case of quadratic
populations given by N1 and N2.

In the linear population of yi j for an invariant measure case with n = 5 and α = 2, M1 produced
an RMSE distribution with a range and mode that was smaller than that produced by M2. However,
the RMSE values did not differ significantly for other sample sizes. This condition is shown in Figure
1(a). In the non-invariant measure case, Figure 1(b) showed the RMSE distribution produced by M1
had a significantly smaller mode and range than M2 with small samples (n = 5). However, for n = 10
and n = 15, functions for g2(πi j) did not produce a significantly different RMSE distribution. In the
quadratic population, both the invariant and non-invariant cases show the RMSE distribution produced
by N1 and N2 did not differ significantly, unless for (n = 5) and α = 2. We examine if the order of
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Figure 1: RMSE distributions produced by model M1 and M2. RMSE = average root mean square error.

Figure 2: RMSE distributions produced by model N1 and N2. RMSE = average root mean square error.

p-spline approach for g2(πi j) in the model will result in different estimators. Graphically, we do this
by comparing the distribution of RMSE for each p-spline degree, by considering size measure and
level of informative sample (α = 1, 2, 3). The comparison is done for both population cases.

5. Concluding remarks

Parametric assumptions in statistical models are often restricted in practice; in addition, informative
effects of sample must be taken into account in model to reduce bias. We predict the mean of small
areas based on a semiparametric mixed-model. We add the inclusion probability function g(π) in the
model to account for the informative effect. The p-spline applied to approach the function of the
covariate variable and the inclusion probability function g(π) in the model.

We obtain best unbiased estimators for the model coefficients and REML estimators for the vari-
ance components. The simulation results in linear and quadratic population case show that the addition
of linear p-spline and quadratic p-spline of inclusion probability into the model can reduce the average
absolute bias. By adding linear or quadratic p-spline with variable π we reduce the RMSE average in
most cases. We also found that the linear and quadratic p-spline approach for the inclusion probabil-
ity function in both population case did not provide a significant difference in the RMSE distribution
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except for the smallest sample sizes with a high degree of informative effect.
The notion of adding the inclusion probability function g(π) in a mixed-model has also been stud-

ied in Verret et al. (2015). They used a nested error regression model and utilized plot of error residu-
als to determined the form of inclusion probability function g(π). In contrast, we use semiparametric
mixed-model and utilize p-spline to approach g(π). This approach is expected to be an alternative to
reduce bias caused by informative sampling. However, like Verret et al. (2015), our approach also
requires information on inclusion probability for all population units. Limited access to population
related to inclusion probability causes constraints in use.

The idea of a p-spline approach as an inclusion probability function in the model can be an alterna-
tive approach to reduce bias in small area estimation under informative sampling. In future work, we
would like to develop variance components estimators obtained in the recent study as well as obtain a
robust prediction to increase the model’s performance.
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