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Abstract

Penalized spline is a suitable nonparametric approach in estimating mean model in small area. However,
application of the approach in informative sampling in a published article is uncommon. We propose a semi-
parametric mixed-model using penalized spline under informative sampling to estimate mean of small area. The
response variable is explained in terms of mean model, informative sample effect, area random effect and unit
error. We approach the mean model by penalized spline and utilize a penalized spline function of the inclusion
probability to account for the informative sample effect. We determine the best and unbiased estimators for coeffi-
cient model and derive the restricted maximum likelihood estimators for the variance components. A simulation
study shows a decrease in the average absolute bias produced by the proposed model. A decrease in the root
mean square error also occurred except in some quadratic cases. The use of linear and quadratic penalized spline
to approach the function of the inclusion probability provides no significant difference distribution of root mean
square error, except for few smaller samples.
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1. Introduction

The need of reliable statistical information for sub-populations that are limited by the small size of
samples has led to the development of small area estimation methods, see for instance Molina et al.
(2014), Tzavidis et al. (2012), Clement (2014), Burgard et al. (2014) and Hwang and Kim (2015).
Small area estimation should be based on a model-based approach (Rao, 2003). In model-based
approach, the parametric assumption stating the relationship of response variables and auxiliary vari-
ables are often limited. Ruppert et al. (2003) studied semiparametric regression with an unspecified
mean function that assumed to be approximated sufficiently by a penalized spline (p-spline). They
obtained an empirically best linear unbiased predictor (EBLUP) using mixed-model formulation. Op-
somer et al. (2008) extended the results of Ruppert et al. (2003) to small area estimation that includes
the random area effect and obtained the EBLUP of mean of small area. Meanwhile, Rao et al. (2014)
applied the approach of Opsomer ef al. (2008) to develop a robust EBLUP of means small area.
Opsomer et al. (2008) and Rao et al. (2014) involved p-spline in the context of a small area mixed-
model. However, they developed their semiparametric model-based approach to estimate small area
means under a noninformative sampling assumption in which standard inference procedures can be
applied.
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Complex sampling designs are often used to collect sample data. In a complex sampling design,
if the sample is informative, the model that is applied to the sample may be different from the model
used in the population. Therefore, a sample model in standard inference may produce a heavy bias.
Both Pfeffermann and Sverchkov (2007, 2009) and Burgard et al. (2014) stated that the informative
effect of the sample must be taken into account in the inference process to reduce bias.

Verret et al. (2015) in added a function of inclusion probability of unit j in area 7, g(m;;) as a
covariate into the unit-level error regression model (Battese et al., 1988), to reduce the informative
effect on the prediction of small area mean. The selection of the g(r;;) function is done by first
plotting the residual model without the variable g(rr;;) to g(r;;) function. The plot graph which tends
to be linear determines the g(rr;;) chosen. Their approach to determine the g(rr;;) function is applied
to a linear mixed-model. However, in non-linear models, the g(r;;) function may be difficult to be
determined because of the possibility of not obtaining the plot that tends to be linear.

We propose a predictive approach for small area means based on semiparametric mixed-model
using p-spline under informative sampling. We take into account the effects of informative sample
by adding a p-spline function of the inclusion probability to the model. Model performances were
measured using mean square error and absolute bias calculated by bootstrap method. We gave a sim-
ulation to evaluate the proposed predictor performance. This article is structured as follows. Section
1 gives the introduction. Section 2 give brief definition of population, sample and informative sam-
pling. We present our model in Section 3 where we define the model, derive estimator parameters; in
addition, we show the estimator properties of the coefficients model and assess model performance.
We present simulation study in Section 4. Summary of our paper is presented in Section 5.

2. Population, sample and informative sampling

Let U be a population of values x and y. U is partitioned into M clusters denoted by U, i=1,...,M
that are seen as small areas. Each cluster contains N; unit elements. A sample of (x;j,y;;) of n;,
denoted as S; = {(x;;,yi))lj = 1,...,m; i = 1,..., M}, is taken independently in each area i using
informative sampling. Pfeffermann and Sverchkov (2009) stated that informative sampling is a sam-
pling mechanism with the probability of inclusion that depends on the response variable. Referring
to Pfeffermann et al. (1998), mathematically the informative sampling conditions in the area i can be
explained as follows. Let I;; denotes (N; X 1) indicator variable such that [;; = 1if j€ S; and [;; = 0
if j ¢ S;. Suppose the population unit on area i, y;; (j = 1,...,N;; i = 1,..., M) is an independent
realization of a distribution with the probability of density expressed as fy,(v;;lx;;) dependent on the
concomitant X;; which may include auxiliary variables and design variables. The marginal probability
function of the sample y; in area i can be written using the Bayes theorem:

fs.0ijlxij) = fu,Qijlxij, €S0
= fu,ijlxij, Lij = 1)
_ P = 145, i) fu, (vijiXig)
- P(l;; = 11x;5)

2.1

If P(I;; = 11x;;,yi;) # P(I;j = 1]x;;), then the sample probability function is different from the popula-
tion probability function. On this condition, the sampling design is called informative. Sample drawn
under informative sampling is called informative sample.
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3. Proposed model

Let the unit value of observation variable, y;;, can always be obtained and covariate variable unit, x;;, is
an univariate variable. The inclusion probability of unit j in the area i is denoted as m;; (j = 1,..., N,
i =1,...,M). Suppose the values of x;; and 7;; known for every i and j. The variable y;; has a
correlation with x;; which is expressed in an unknown function g(x;;). The random area effect, v;, is
also considered. The sample model is:

yij=gi(xip)+vitey, j=L...,ni=1,...,M, (3.1)
with e;; is unit error. We assume ¢;; and v;; have a normal distribution with mean zero and variance 0'?
and o2 respectively. Furthermore, we concern the informative sampling effects by adding an unknown
probability inclusion functions g»(r;;) into the model:

yij=g1(x,~j)+g2(7rl~j)+vi+eij, j= 1,...,I’li; i= 1,...,M. (32)

We add the function of inclusion probability to the model based on the Pfeffermann and Sverchkov
(2009) affirmation that the inclusion probability is a rough summary that allows the design variables.
This statement provides an alternative way to overcome the effects of informative sampling in a model-
based approach, especially when it is encountered with a very complex or even unknown sampling
design.

We assume that function g;(x;;) and g»(n;;) in (3.2) are smooth, therefore it can be approached by
a p-spline function. The proposed sample model is:

V4 K s K>
Yij =PBo+ Zﬁkx{'(j + Z n(xij — gl + Z 5/(71{'3' + Z re(mij — Q1)L + vi + eij, (3.3)
=1 =1 =1 =1

for j=1,...,n;i=1,...,M where p and s are degrees of p-spline function for g;(x;;) and g>(r;;)
respectively. The coefficients of the parametric part and spline part for g;(x;;) are expressed se-
quentially as B, and #,. Meanwhile, d; and ry are for g2(m;;). Also, the followings were defined
(x5 — g} = max(0, Xij — qr)? and (m;; — Qk)} = max(0, 7;; — Oy)*. Hereafter, g, and Qy are knots in
x and 7 respectively. Model (3.3) is defined for each area in the population. Let x;; = [1 x;; --- xf}],
m; = [ 7T,-2j -+l and zy; = [(x; —q) - = agr)i) 2o = (G — QDY -+ (15 — Ok,)5
By defining the following vectors, B = [By -+ BpI', 6 = [6g -+ 6,1, by = [ty --- t, ], and
hy = [r| --- rk,]', equation (3.3) can restated as

Vij = XiiB+m 6 +ziih + iy +vite;; j=1...n5i=1,..., M. (3.4)
Furthermore, by denoting col{a;}!; as column matrix with element (ay,...,a,) and diag{a;}!_, as
diagonal matrix with diagonal element (ay,...,a,), we define matrices Z; = col({col({z}; j};le)}f‘;’ Ds

Z, = col({eol({zai} L V), Z3 = diag({1,,}} ), hs = [v1 -+ vy]', and e = col({col(fe; )}
Using all sample data, model (3.4) can be stated briefly in a matrix form:

y=XB+116 + Zh + e, 3.5)

where y = col({col({yl,-j};f"zl)}?;fl), X = col({col({xlij};f‘zl)}f‘;ll), andII = col({col({frlij}f;’:l)}fil). Mean-

while, h = [h’l k, hg]t and Z = [Z 1 2, Z3] are partition matrices. We assume also that matrix
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X, x(p+1) and I, have full column rank. Penalized spline fitting criteria after divided by 0'3, is equal
to best unbiased linear prediction criteria in mixed-model if h; and h; are considered as a set of ran-
dom coefficients with cov(h;) = o‘ill x, and cov(hy) = o-izl k,- In our case, parameters of smoothing
p-spline fulfill /l% =/ 0',211 and /lg =/ o’iz. We assume that i, and h; independently and identically
normal distribution around zero with a certain variance. In brief, least square problem in p-spline in
this paper is equivalent to best unbiased prediction problem in (3.5). Let Gy = 0',2“1 k fork=1,2,3
where K3 = M. The model involves functions which are mixture of fixed parameters in 8 and 6
and linear function for random quantity in hy, hy, h3, where h; iid N(, o-flkl k), for k = 1,2,3 and

e ™ N, 020,).

3.1. Estimator of coefficient vector

Estimators for 8, é and predictors for h can be obtained simultaneously through Henderson mixed-
model equation. By defining Z, = I,,,G4 = 0'%411(4, where hy = e, and K4 = n (n = Zf‘;’l n;), variance
of y can be written as

4
V= ZZkaZ’, (3.6)

k=1

V is a diagonal matrix so V is symmetric. Subsequently, by assuming (ylh) ~ N(XB+I16 +Zh,G4), the

conditional density for y with given A can be written as f(ylh) ~ exp{—(1/2)(y - XB —I16 — Zh)’G;l y—
XB — 116 — Zh)}. The joint density for y and h can be obtained using formula f(y,h) = f(ylh)f(h) =

fOlh)f(hy)f(hy)f(hs). The joint density function f(y,h) is then maximized against 8, 8, h;, hy, h3

through its logarithm function to get the following Henderson mixed-model equation,

X'X X1 X'Z, X'Z, X'Zy B1 [X'y
Ir'x II'n 'z, I1'z, I1'Z; o Iy
Z'X Zi'M Zy'Zy + Xy, Z1'Z, Z'Z, h| = |z, (3.7)
2,’X 7,11 2,'Z, 2,7, + Xy, 2,73 h| |4y
Z3ZX Z3ZH Z3fZI Z31Z2 Z; IZ3 + /l%] M h3 Z3’y

where /lg = 0'2/ o-i}. Let J is the invers of coefficient matrix on equation (3.7) with J, is the element

in the b™ row and b column in matrix J. The solution of (3.7) leads to an estimators for the model
coefficient parameters, that is

[P e Y
S
<

= |Uly|, (3.8)

- =S =S
o =

|

g

where, l]ll = Jl1XZ+J12HI+JI321r+114Z2[+115Z3t, l]t2 = 121X1+122H[+123zlr+.’24th+stz3t, Ug =
.’31X’ + J32Ht + J33le + J34Z2t + J35Z3t, UZ = J41Xt + J42Hr + J43th + J44%l + J4SZ3’, and
UtS = J51X’ + JSZHt + J53Z]r + .’54Z2t + J55Z3l.
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3.2. Properties of estimator of coefficient vector
Properties of (3.8) are derived in line with the ideas of Rao et al. (2014). By writing

X T 2z 2 Z[|x T 2 2 Z|asJ"' -diag[0 0 Bl Bli, Blul

thus,
Uil[x M 2, z, z|=7(J"-diag[0 0 Xl Blx, Blu). (3.9)

From (3.8) and (3.9) we may obtain E() = U (XB + 1) = B and E(6) = U',(XB + ) = & which
show thatﬁ and 8 are unbiased, respectively. Likewise, E(hi—h))=U L(XB+116)-0 =0, E(hy—h,) =
U, (XB +T16) -0 = 0, E(hs — h3) = UL(XB +T18) — 0 = 0 which also show that k;, h,, and h; are
unbiased, respectively.

Because V(yw, d, hg,h3) = ZlGlztl + G4 and E(ylﬁ, 0, hz,h3) = Xﬂ +1I16 + Zzhg + Z3h3, and using
relation E(alb) = E(a) + cov(a, b).V(b)™ (b — E(b)), we get

-1
E (h|ylB.8,h2, 13)) = G\Z} (Z1G\Z +Ga) (v — XB~T16 — Zohs — Z3hs) .

Meanwhile, using the third row of (3.7) we also obtain
A -1 o “ A A
hy =G\Z\(2:G\Z +G.) (y-XB-T6-Zsh, - Zshs).

It is proven that ﬁl = E(hy |(y|ﬁ, 3 ilz,ilg,)). Thus ﬁl is the best predictor for h;. The best predictor
properties of h, and hj are proven similarly.

3.3. Estimation of variance components

We estimate the variance components o-ik, for k = 1,2, 3,4 by using restricted maximum likelihood
(REML) method which was first stated by Patterson and Thompson (1971). This estimation is based
on linear combination of element y, namely K’y, chosen as such that K’y does not contain fixed
effect, that is K'X = 0 and K'IT = 0. We first determine K’, construct REML equation by maximize
the likelihood function of K’ to o-flk, (k = 1,2,3,4), and solving the REML equation to get REML

estimator of o and o .

3.3.1. Determine K’

We determine the matrix K’ by first rewriting fixed effects in (3.5) in partition matrices form, that is
y=I[Xx m[g 6']' + Y3, Zihy + e. Suppose K' is as such, thus [K'X K'TI] = K'[X TI] = [0 0].
Eligible K’ can be determined as:

K'=I-[x n]([ﬁi} [x rl])1 [ﬁi} (3.10)
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By developing matrix inverse on (3.10) we have
K'= M- MX(X'MX) XM, G.11)

where M = I — TIQT'TI)~'II. It is easy to prove that M and K’ are idempotent and symmetric matrix.
Another form of K is K* = (M — MIIAT'MIT)~'TI'M) with M = I - X(X'X)"'X".

3.3.2. REML equation

Furthermore, REML equation will be formed by first establishing likelihood function for K'y. By
assuming y ~ N(XB + 116, V) thus Ky ~ N(0,K'VK), the likelihood function for K’y can be stated
as L ~ (K'VK|)~2¢~(1/2yKK'VK)'K'y By maximizing the logarithm function of L on o-ﬁk, for k =
1,2,3,4, we obtain the REML equation in trace matrix:

tr(P ad ):ytP ad (3.12)

P - 5 b
o2 o>
/‘l/( hk

with P = K(K'VK)"'K'. Tt is clear that P is a idempotent and symmetric matrix. Considering
6V/80’%k =Z;Z, fork = 1,2,3,4, the REML equation (3.12) can be restated:

col tr(PZiZy)|. | = col |y PZiZ;Py],
that is equivalent to
tr(P) = y'P%y, for k=4 (3.13)
and

tr(PZiZ;) = y'PZZPy, for k=1,2,3. (3.14)

3.3.3. REML estimator of o2

Estimator for variance of error can be obtained by first multiplying (3.14) with o-ik and then adding
fork=1,2,3. We get

3 3
tr [P > aﬁkzsz] =y'P> o} ZiZ,Py. (3.15)
k=1 k=1

Then from (3.15) by considering 37_, op ZiZ, =V — 0, Z,Z, PVP = P and (3.13), we can write

tr(PV) = y'Py. (3.16)
We used the following theorem stated in Rencher and Schaalje (2008) to develop (3.16).
Theorem 1. If A is symmetric and idempotent matrix of rank v, then rank(A) = tr(A) = r.
The left hand side of (3.16) described as follows. V is diagonal matrix with full rank, therefore
rank(PV) = rank(P)
= rank (K (K'K) ' K')

= rank (K'). (3.17)
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Because PVP = P we get PVPV = PV in other word, PV is idempotent. Furthermore,
(PV) =V'P

= VP (because P and V are symmetric)
=P 'PVP
=1 (because PVP = P).

Because I is symmetric, we can get (PV)" = PV, in other word PV is symmetric. By using Theorem
(1) and (3.17), we can write the left hand side of (3.16) as:

tr(PV) = rank(PV)
= rank(K"). (3.18)

Matrix M is idempotent and symmetric so that MX(X'MX)~'X'M idempotent and symmetric, there-
fore by theorem (1), rank(MX(X'MX)™'X'M) = tr(MX(X'MX)~'X'M). Matrix IL,,, has full column
rank. Using (3.11), equation (3.18) becomes

tr(PV) = rank(M) — rank (MX (x'mx)" X’M)
—n—s—tr (MX (x'Mx)"’ X’M). (3.19)
We describe the right hand side of (3.16) by first rewriting P in the following theorem.
Theorem 2. [fK'X =0 and K'T1 = 0 and V is a positive definite matrix, then
K(K'VK) K'=P, (3.20)
with P = M* — M*X(X'M*X)"' X'M* and M* = V-' — V-'"TIAT'V-"T1)" " TI'V .

Proof: It is clear that V is symmetric, nonsingular with full rank. Consequently, symmetric matrix
iz always exists as such so that V = (V/2)2. We can obtain (V'/2K)'V~1/2X = 0 and (V'/2K)'V-/11
=0 as a result of K’X = 0 dan K'II = 0. Applying Searle’s idea in our case, K replaced with V'/2K,
X with V=1/2X and IT with V~!/?IT in the equation K(K'K)™'K’ = K’ (Searle, 1982). By multiplying
V=172 on the left and right sides, we get

K(K'VK) K'=M -M'X(XM'X) X'M" =P, (3.21)

where M* = V-! — V-IIIAT'V-'I)"'II'V~" and V~! is the matrix inverse of variance y. Let D =

diag({Gk}zzl), we get

V'=6;'-G,'2(ZG;'z+D™) ' Z Gy, (3.22)
O

An alternative for P is P = M** - M*TIAI M**I1)"'TI'M** where M™* = V-1 -V I XX'V-1X)~' X"
V! using K’ = (M — MII(II'MTII)~'II'M). The matrix h may be stated as:

h=(2G;'z+D") 26} (y-XB-15), (3.23)
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obtained using third, fourth, and fifth row of (3.7) with 8 and & in place of B and & respectively.
Substituting A to the first and second row of equation (3.7) and considering (3.22), resulting in the
following equation,

X'VIXB+X'VII6 =X'Vly, (3.24)
II'v-'Xg+II'v-'116 = Ir'v-'y. (3.25)

By substituting B from (3.25) into (3.24), and using P in Theorem 2, we get
VPy = (y - XB - T13). (3.26)

By using (3.19), (3.26) and relation PVP = P, we can write equation (3.16) as:
n—s—tr (Mx (x'mx)” fo) — yPVV"'VPy. (3.27)

Substituting (3.22) in (3.27), the right-hand side of (3.27) becomes GZI y(y - Xﬁ —T16 — Zh) where h
as showed in (3.23) and G, ' = 0,*I,. Thus, we can determine the estimator for o7:

5 - y’(y—X,é—l'I&—ZlAl)

b
€ n—s—w

(3.28)
where w = tr(MX(X'MX)"'X'M).

3.3.4. REML estimator of o-ik

We determine estimator for a'ik, where k = 1,2,3 using approach in Searle et al. (2006). Take
Z = 0 in V then substitute it into P in (3.20) to get § = M* — M*X(X’M*X)"'X'M* with M* =
GZL —G;ll'[(H‘GZIH)‘ll'I’Ggl. Matrix P can be stated in S asP =8 —SZ(D"'+Z'SZ)"'Z'S and can
be rewritten:

P=8S -SZDTZ'S, (3.29)

with T = (I + Z'SZD)™". Let Fy is defined as D with identity element in o and 0 in 0'§; j# k.
Therefore DFy; = o-ﬁk Fy or

DF

Fy=——, k=123 (3.30)
O'hk
Using (3.29) and (3.30), the left-hand side of (3.14) can be stated:
F,-TF
r(PZZ}) = tr(u). (3.31)
T

We obtain DZ'V~! = (D™ + Z’GZIZ)*Z’G;]. Then by using (3.23) and (3.26) we get

DZ'Py = DZ'V~'VPy
—h (3.32)
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Substituting (3.30) and (3.32) on the right-hand side of (3.14), we obtain

PPN
h by
'PZ.Z!Py = *=. 333
y IPy O'Zk ( )

Equation (3.31) and (3.33) are substituted into (3.14) to obtain estimator for a‘ik, k=1,2,3, thatis

At A

52 h,hy

=— k=1,2,3. 3.34
T = & (Fe— TFu) 034

The REML estimator for variance components is obtained using (3.28) and (3.34):

y’(y—Xﬁ—HS—Zﬁ)

o0 = : (3.35)
n—s—w
21(b) 2 (D)
hy h
A2(b+l) 1 1
& ot (3.36)
I —u(T)
At(b) (b)
~2(b+1) — h2 h2 (3 37)
o Ky —te(T)’
~1(b) 2(b)
hy h
A2(b+1) _ 3 N3 338
g — t(T) (3-38)

where T is the element in the k" row and k" column in matrix T. Equations (3.35), (3.36), (3.37),
and (3.38) are counted with the following iterative process: (i) determine initial value 8% for 8 =
(a’hl 0'%2 a'h ,02); (i) calculate B0, 6, A", A, and h(o) using 8 in (3.8) and e =y — XB© +
6@ + Zh(o) (iii) calculate right-hand side of (3 35) to (3.38) using the result in (ii) to get updated
value of 8V; (iv) repeat step (iii) until 0= (0' , h , 0' hy? 5) convergent. The obtained value 0 is then

used in (3.8) to obtain estimators B, 8, h1, hz, h3.

3.4. Predictor of mean and performance model

The prediction for mean of i small area is calculated:

{Z Yij + Zyu} s (3.39)
l i€S

ieS

where S; and S; are consecutively state sample unit sets and non-sample unit sets in area-i and §;; =
X j,[i +; ,-8 +21; Jfll + 20, ]fzz + 9; is the predictor of y;; for j € S using the proposed model.

We apply the bootstrap procedure stated by Rao et al. (2014) to get conditional bootstrap esti-
mation for root mean square error (RMSE) and absolute bias (AB) for f;. The steps are: (i) gen-
erate h; = [vi’ --- v};]" and e* with kb ~ N(O, é'}zth) and e* ~ N(0,621,); (ii) calculate response

5

Vi = x,-ﬁ + 7r,-j3 + Z1i,f11 + 22ijf12 + Vi + el’.‘j forj=1,...,N;, i =1,..., M, (iii) calculate bootstrap

estimation for ﬁ*, 5, h, il; v by using sample data (y; x,],nlj) forje sjandi = 1,...,M; (iv)

ij’
calculate predictive values for non-sample areas using j} = X; jﬂ + m; 16 + 2Zy; ,h + 29; Jh* + vi; for
J € 5;; (v) calculate empirical bootstrap prediction for Yi with @7 = (1/N){X jes, yij + Djes, l.j}, and
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bootstrap population mean with ¥ T =(1/N) Z;lev vij; (vi) repeat step (i) to (v) B times; (vii) calculate
RMSE and AB for bootstrap estimator for fi;: RMSEpoo (i) = {(1/B) YB {mib) - Y (b)}*}'/2, and
ABypoot(i) = (1/B) Zp_ [ (b) = Y (D).

4. Simulation study

Let the population be partitioned into 20 small areas of N; size that are determined randomly in inter-
val [800, 1000], that is N; = {945, 886,984, 838,997, 841,972, 985, 865, 947,952,919, 856, 889, 905,
806,979, 833,926, 875}. We generated the population data y;; for b™ simulation (b = 1, ..., 1000) by
the following linear and quadratic model, respectively:

linear case: yl(.};) =1+x;+ v 4 eﬁ?); i=1,...,20; j=1,...,N; 4.1

i
and

quadratic case : ys?) =1+x;+ x,-zl- +v 4 ef.f); i=1,...,20; j=1,...,N; “4.2)

i
where x;; id N(1,2), v; id N(0,1), and e;; i N(0, 1.5). The values of x;; was fixed for each run of
b™ simulation. The sample size n; vary by 5, 10, and 15 for every area i. The sample data was drawn
based on unequal inclusion probability determined by ;; = n(d;j/ 37, d;;) without replacement. The
size variable d;; was Asparouhov’s size measure classified in invariant (I) and non invariant (NI) type.
The invariant type was independent of the random area effect v;;, in contrast to non-invariant. We set
the weight as 1 and stated both in a row:

dij = (1 +exp (— (“_leij + V1 “_ze?)))_l ’

for invariant, and
dij = (1 +exp (_ (a_l (eij + Vi) + Vl-a7 (e + v?))))_l ’

for non invariant, Asparouhov (2006). Notation @ denoted the level of informative effect. Increasing
the @’s values indicated decreasing informative effect. We observed « for 1,2, 3, or co, with @ = oo
indicated the sampling was non informative. The error unit e} N (0, 1.5) and random effect v} i
N(0, 1) were generated independently of e;; and v;. The samples size n; varies 5, 10, and 15 in each
area.

The location of k" knots of x was determined by quantile formula:

k+1 th 1 ile of th .
= sample quantile of the unique x;,
el Ki+2 pled aue s

fork =1,...,K; with K; = min(1/4 X number of unique x;;, 35), as stated by Ruppert et al. (2003).
The knots Oy (k = 1,..., K;) for m was obtained analogously. Succinctly, in this simulation we used
a linear and quadratic p-spline approach for gi(x;;) and g»(rr;;) which were used on (3.3) or (3.1).
The (3.1) model did not account for informative effect. This model was used as a comparison for the
proposed (3.3) model to observe the effect of the addition of function g, (;;) to the model performance.
Two cases of the population were constructed using (4.1) and (4.2), where samples were taken with the
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Table 1: Models for simulation

Degree of p-spline Model notation

Population of y;; Model approach

81(xij) 82(ij)
yij = 1+ x5 +vi +ejj Yij = &lij + &2ij + Vi + €ij 1 1 M1
y,-j:l+x,-j+v,~+e,-j yij:g|,-_,'+g2,~.,~+v,'+e,~j 1 2 M2
y,-j:l+xl-j+xi2.+v,-+e,-j Yij = &1ij + &2ij + Vi + €ij 2 1 N1
Yij = 1+x,-j+xt.j+v,~+e,-j yij=g|,-j+g2,~_,~+v,'+e,~‘,~ 2 2 N2
yij =1+ xij +vi +ejj Yij = &1ij +viteij 1 - R1
Yij = 1+ Xij + xizj +v; + €j Yij = 81ij +v; + ej 2 - R2
Table 2: The values of AB and RMSE of model M1 and R1 over 20 areas for linear case
Performance o Size Model M1 Model R1

measure measure n =5 n; =10 n; =15 n =5 n; =10 n; =15

1 1 0.1451 0.7779 0.7920 1.0919 1.2184 1.1706

NI 0.1387 0.5907 0.5884 0.7628 1.0047 0.9332

5 1 0.1725 0.6744 0.7075 0.6175 1.1499 1.0318

— NI 0.1425 0.7191 0.8323 1.3266 1.1541 1.1335

AB 3 1 0.1486 0.6370 0.9154 1.3397 1.0592 1.0012

NI 0.1505 0.7312 0.5961 0.9592 1.0086 1.0429

o 1 0.7684 0.6841 0.6858 1.0403 1.2914 1.1369

NI 0.5741 0.6146 0.7890 1.0649 0.8701 1.0868

1 1 0.1842 1.2694 1.3022 1.3196 1.4631 1.4065

NI 0.1837 0.9484 0.9616 0.9268 1.2084 1.1231

2 1 0.2102 1.0879 1.1480 0.7525 1.3820 1.2395

RMVSE NI 0.1806 1.1610 1.3669 1.6024 1.3875 1.3630

3 1 0.1828 1.0185 1.4941 1.6166 1.2754 1.2031

NI 0.1800 1.1812 0.9543 1.1578 1.2157 1.2531

o 1 1.2126 1.0892 1.1128 1.2583 1.5512 1.3626

NI 0.8893 0.9638 1.2853 1.2868 1.0508 1.3067

AB = average absolute bias; RMSE = average root mean square error; @ = the level of informative effect; I = invariant; NI
= non invariant; n; = sample size; M1 = model (3.3) with linear p-spline for g;(x;;) and g2(r;;); R1 = model (3.1), M with
linear p-spline for g1 (xj;).

inclusion probability determined by the size of invariant (I) and non-invariant (NI). We summarized
the models in Table 1.

Values of AB and RMSE were calculated based on B = 1,000 bootstrap samples. The average
absolute bias (E) and average RMSE (RMSE) over 20 areas were provided. Table 2 reports the
simulation results of AB and RMSE over 20 areas for linear case produced by M1 and R1, for each
level of informative effect and sample size taken. As indicated in Table 2, overall, M1 produced a
smaller AB than that of the RI. The average bias in the simulated linear case can be reduced by
adding the linear p-spline function of the inclusion probability into the semiparametric model. The
minimum value of AB for each sample size in a non-invariant case produced by M1 (0.1387 for
n = 5;0.5907 for n = 10 and 0.5888 for n = 15) occurred in a very informative sample (@ = 1). In
the invariant case, as the sample size increased, the minimum AB occurred in a sample with lower
level of informative effect (0.145ona = 1,n = 5; 0.6370 on @ = 2, n = 10; and 0.6858 on a = 3,
n = 15). The RMSE values generated by M1 were smaller than those generated by R1 except in non-
invariant case with n = 15, the RMSE value produced by M1 was slightly higher by 0.0039(a = 2)
and 0.291(a = 2) than that was produced by R1.

Table 3 reports the finding in the quadratic case that also indicates the values of AB and RMSE
resulted by N1 and R2 for each level of informative effect and sample size taken. N1 produced AB
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Table 3: The values of AB and RMSE of model N1 and R2 over 20 areas for quadratic case

Performance Size Model N1 Model R2
measure @ measure n =5 n; =10 n; =15 n=5 n; =10 n; =15
1 T 0.1989 09478 09736 10859 1.5856 1.1425
NI 02073 07667  0.6582 12789 0.9780 1.0293
N T 0.1856  0.7285 09141 14075 1.1320 10413
5 NI 11068 0.6720  0.9196 14257 11535 1.1089
3 I 0.1805 07114 0.8928 13245 13317 09857
NI 06943 02539  0.9659 10105  1.0548 1.1109
- I 0.1921  0.6795 0.8530 14694 1.650 T1131
NI 0.1841 07612 0.9910 1.0421 1.5992 1.0670
1 T 03430 14895 13653 13120 1.8246 13791
NI 03538  1.1973  0.9487 14388 11812 12182
N T 03217 12232 12859 15287 13658 12490
__ NI 14027 L1113 1.2944 17009  1.3870 13392
RMSE ] T 03227 1.1057 12595 16002 1.5465 T.1878
NI 09370 03611 13614 12112 1.2581 13253
- I 03354 1.0175 1.1938 16825  1.5273 13400
NI 03267  1.1591 13912 1.2641 1.7663 1.2870

AB = average absolute bias; RMSE = average root mean square error; @ = the level of informative effect; I = invariant; NI
= non invariant; n; = sample size; N1 = model (3.3) with quadratic p-spline for g1 (x;;) and linear p-spline for g (;;); R2 =
model (3.1) with quadratic p-spline for g1 (x;;).

values that were smaller than those produced under R2 for each sample size and the level of the
informative sample. The average bias in the simulated quadratic case can be reduced by adding the
linear p-spline function of the inclusion probability into the semiparametric model. The minimum
value of AB occurred in samples that were less informative in invariant type sizes as the sample size
increased. In invariant type sizes, as the sample size increased, the minimum value of AB occurred in
samples that were less informative (0.1805 for 4@ = 3, n = 5) and non informative sample (0.6795 for
n = 10 and 0.8530 for n = 15); conversely, in non-invariant cases (0.1841 for @ = oo, n = 5; 0.253 for
a =3,n=10and 0.6582 for @ = 1 and n = 5). As sample sizes increased, a minimum AB value was
obtained in more informative samples (0.1841 for @ = oo, n = 5; 0.2539 for @ = 3, n = 10 and 0.1841
for @ = 1, n = 15). N1 also yielded a value of RMSE higher than R2 in five simulation cases in Table
3. A RMSE difference of 0.0161 occurred in a sample size of 10 with non-invariant type measure and
a = 1. Meanwhile, a RMSE difference of 0.0369 (o = 2) and 0.0717 (@ = 3) in the sample of 15 with
invariant measure size, and respectively 0.0361 (@ = 3) and 0.1042 (@ = o) for non invariant cases.

We examine if the order of p-spline approach for g,(rr;;) in the model will result in different
estimators. Graphically, we do this by comparing distribution of RMSE of each p-spline degree, by
considering size measure and level of informative sample (o = 1,2, 3). The comparison is done for
both population cases. Figure 1 shows a comparison of the distribution of RMSE values generated
by M1 and M2 in the case of linear population y;; while Figure 2 indicates for the case of quadratic
populations given by N1 and N2.

In the linear population of y;; for an invariant measure case with n = 5 and & = 2, M1 produced
an RMSE distribution with a range and mode that was smaller than that produced by M2. However,
the RMSE values did not differ significantly for other sample sizes. This condition is shown in Figure
1(a). In the non-invariant measure case, Figure 1(b) showed the RMSE distribution produced by M1
had a significantly smaller mode and range than M2 with small samples (n = 5). However, for n = 10
and n = 15, functions for g(rr;;) did not produce a significantly different RMSE distribution. In the
quadratic population, both the invariant and non-invariant cases show the RMSE distribution produced
by N1 and N2 did not differ significantly, unless for (n = 5) and @ = 2. We examine if the order of
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Figure 1: RMSE distributions produced by model M1 and M2. RMSE = average root mean square error.
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Figure 2: RMSE distributions produced by model N1 and N2. RMSE = average root mean square error.

p-spline approach for g;(rr;;) in the model will result in different estimators. Graphically, we do this
by comparing the distribution of RMSE for each p-spline degree, by considering size measure and
level of informative sample (@ = 1,2, 3). The comparison is done for both population cases.

5. Concluding remarks

Parametric assumptions in statistical models are often restricted in practice; in addition, informative
effects of sample must be taken into account in model to reduce bias. We predict the mean of small
areas based on a semiparametric mixed-model. We add the inclusion probability function g(r) in the
model to account for the informative effect. The p-spline applied to approach the function of the
covariate variable and the inclusion probability function g(rr) in the model.

We obtain best unbiased estimators for the model coefficients and REML estimators for the vari-
ance components. The simulation results in linear and quadratic population case show that the addition
of linear p-spline and quadratic p-spline of inclusion probability into the model can reduce the average
absolute bias. By adding linear or quadratic p-spline with variable 7 we reduce the RMSE average in
most cases. We also found that the linear and quadratic p-spline approach for the inclusion probabil-
ity function in both population case did not provide a significant difference in the RMSE distribution
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except for the smallest sample sizes with a high degree of informative effect.

The notion of adding the inclusion probability function g(rr) in a mixed-model has also been stud-
ied in Verret ef al. (2015). They used a nested error regression model and utilized plot of error residu-
als to determined the form of inclusion probability function g(r). In contrast, we use semiparametric
mixed-model and utilize p-spline to approach g(r). This approach is expected to be an alternative to
reduce bias caused by informative sampling. However, like Verret et al. (2015), our approach also
requires information on inclusion probability for all population units. Limited access to population
related to inclusion probability causes constraints in use.

The idea of a p-spline approach as an inclusion probability function in the model can be an alterna-
tive approach to reduce bias in small area estimation under informative sampling. In future work, we
would like to develop variance components estimators obtained in the recent study as well as obtain a
robust prediction to increase the model’s performance.
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