• Title/Summary/Keyword: salinity gradient

Search Result 91, Processing Time 0.023 seconds

The Environmental Impacts of Seasonal Variation on Characteristics of Geochemical Parameters in Lake Shihwa, Korea (시화호의 계절변화에 따른 지화학적 환경요인 특성 연구)

  • Kim Tae-Ha;Park Yong-Chul;Lee Hyo-Jin;Kim Dong-Hwa;Park Jun-Kun;Kim Sung-Jun;Lee Mi-Yeon
    • Journal of Environmental Science International
    • /
    • v.13 no.12
    • /
    • pp.1089-1102
    • /
    • 2004
  • Seasonal variation of biogeochemical characteristics was determined in Lake Shihwa from October 2002 to August 2003. When the lake was artificially constructed for the freshwater reservoir in 1988, the development of the strong haline density stratification resulted in two-layered system in water column and hypoxic/anoxic environment prevailed in the bottom layer due to oxidation of accumulated organic matters in the lake. Recently, seawater flux to the lake through the sluice has been increased to improve water quality in the lake since 2000, but seasonal stratification and hypoxic bottom layer of the lake still developed in the summer due to the nature of artificially enclosed lake system. As the lake is still receiving tremendous amount of organic matters and other pollutants from neighboring streams during the rainy summer season, limited seawater flux sluicing into the lake may not be enough for the physical and biogeochemical mass balance especially in the summer. The excess of accumulated organic matters in the bottom layer apparently exhausted dissolved oxygen and affected biogeochemical distributions and processes of organic and inorganic compounds in the stratified two-layered environment in the summer. During the summer, ammonia and dissolved organic carbon remarkably increased in the bottom layer due to the hypoxic/anoxic condition in the bottom layer. Phosphate also increased as the result of benthic flux from the bottom sediment. Meanwhile, dissolved organic carbon showed the highest value at the upstream area and decreased along the salinity gradient in the lake. In addition to the sources from the upstream, autochthonous origin of particulate organic carbon from algal bloom in the lake might be more important for sustaining aggravated water quality and development of deteriorated bottom environment in the summer. The removal of trace metals could be attributed to scavenging by strong insoluble metal-sulfide compounds in the hypoxic/anoxic bottom layer in the summer.

Effects of Nitrogen Application on the Patterns of Amino Acids, Nitrogen Contents and Growth Response of Four Legume Plants under Saline Conditions (염분 환경하에서 4종 콩과식물의 생장, 아미노산 및 질소함량에 미치는 질소원의 영향)

  • 배정진;추연식;김진아;노광수;송종석;송승달
    • The Korean Journal of Ecology
    • /
    • v.26 no.3
    • /
    • pp.135-142
    • /
    • 2003
  • Four legume plants showed better growth by the external nitrogen supply rather than the symbiotic nitrogen fixation only under salt additions. In case of Glycine max and Phaseolus angularis, total nitrogen contents decreased by high salinity level but their amino acid levels significantly increased with the increase of salt treatments and indicated high soluble-/insoluble-N ratios. Cassia tora and Albizzia julibrissin contained less amino acids than G. max and P. angularis but total N (esp. insoluble N fraction) increased with higher salt levels. Asparagine occurred as a main amino acid especially in G. max and P. angularis and can be seen as potential N-storage form in these plants. It might be play an important role for the osmoregulation mechanism under the saline condition. Meanwhile, to investigate what kinds of nitrogen sources are effective for overcoming salt stress on soybean plants, various N forms and concentrations (NH₄NO₃-N, NO₃-N, NH₄NO₃-N; 2.5 and 5 mM) were additionally supplied to the salt gradient medium. Soybean plants treated with NH₄NO₃-N showed the best growth up to 40 mM NaCl and NO₃- fed plants indicated good growth even at 80 mM NaCl treatments. Contrary to NH₄NO₃- and NO₃- fed plants, NH₄/sup +/- fed plants showed remarkable growth reduction and died by 40 and 80 mM NaCl treatments after the first harvest (15th day). Consequently, these results suggest that salt excluding and resistant capacities of soybean plants under NaCl treatments are increased in order of NH₄ - N, control, NO₃- N and NH₄NO₃- N depending on N concentration except NH₄- N treatments.

Toxicological Assessment to Environmental Stressors Using Exoskeleton Surface Roughness in Macrophthalmus japonicus: New Approach for an Integrated End-point Development (칠게 외골격 표면 거칠기를 이용한 노출 독성 평가: 새로운 융합적 연구)

  • Park, Kiyun;Kwak, Ihn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.4
    • /
    • pp.265-271
    • /
    • 2021
  • Intertidal mud crab (Macrophthalmus japonicus) is an organism with a hard chitinous exoskeleton and has function for an osmotic control in response to the salinity gradient of seawater. Crustacean exoskeletons change in their natural state in response to environmental factors, such as changes in the pH and water temperature, and the presence of pollutant substances and pathogen infection. In this study, the ecotoxicological effects of irgarol exposure and heavy metal distribution were presented by analyzing the surface roughness of the crab exoskeleton. The exoskeleton surface roughness and variation reduced in M. japonicus exposed to irgarol. In addition, it was confirmed that the surface roughness and variation were changed in the field M. japonicus crab according to the distribution of toxic heavy metals(Cd, Pb, Hg) in marine sediments. This change in the surface roughness of the exoskeleton represents a new end-point of the biological response of the crab according to external environmental stressors. This suggests that it may affect the functional aspects of exoskeleton protection, support, and transport. This approach can be utilized as a useful method for monitoring the aquatic environment as an integrated technology of mechanical engineering and biology.

Primary Productivity and Pigments Variation of Phytoplankton in the Seomjin River Estuary during Rainy Season in Summer (하계 강우기 섬진강 하구역의 일차생산력 및 식물플랑크톤 색소조성 변화)

  • Min, Jun-Oh;Ha, Sun-Yong;Choi, Bo-Hyung;Chung, Mi-Hee;Yoon, Won-Duk;Lee, Jae-Seong;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.3
    • /
    • pp.303-313
    • /
    • 2011
  • Field observations and culture experiments have been carried out during the rainy season (on the 6th, 8th and 27th July 2009) to examine changes in the primary productivity and associated plant pigments in the estuary of the Seom-jin River. Primary productivity was determined at four sampling stations along the salinity gradient. On 6th July (before heavy rain) primary productivity ranged from 689~1,169 mgC $m^{-2}$ $d^{-1}$. On the 8th, just after more than 216.5 mm of precipitation, euphotic layers at all stations were reduced to very shallow water because of the high concentration of suspended solids in the water. This resulted in dramatically decreased primary productivity down to as low as 12~32 mg C $m^{-2}$ $d^{-1}$. However, after the rain, primary productivity on the 27th ranged from 266~999 mgC $m^{-2}$ $d^{-1}$, demonstrating a fast recovery in the upper stream water to similar productivity levels to those before the rainy season. Concentration of fucoxanthin in the water was highest on the 6th July. Before the rain, concentration of the zeaxanthin, increased as the salinity decreased. Immediately after the heavy rain, the Chl b (Chlorophytes) concentration was higher at all sites than before the rainy season. The concentration of fucoxanthin decreased after the heavy rain. At the downstream site, peridinin (Dinoflagellates) were found. During the rainy season, the diatoms contributed to the primary productivity at all sites. However, after the rainy season, Chl b (Chlorophytes) and Peridinin (Dinoflagellates) increased, demonstrating the enhanced contribution of those species in addition to diatoms.

Estimation of Addition and Removal Processes of Nutrients from Bottom Water in the Saemangeum Salt-Water Lake by Using Mixing Model (혼합모델을 이용한 새만금호 저층수 내 영양염의 공급과 제거에 관한 연구)

  • Jeong, Yong Hoon;Kim, Chang Shik;Yang, Jae Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.4
    • /
    • pp.306-317
    • /
    • 2014
  • This study has been executed to understand the additional and removal processes of nutrients in the Saemangeum Salt-water Lake, and discussed with other monthly-collected environmental parameters such as water temperature, salinity, dissolved oxygen, suspended solids, and Chl-a from 2008 to 2010. $NO_3$-N, TP, $PO_4$-P, and DISi showed the removal processes along with the salinity gradients at the surface water of the lake, whereas $NO_2$-N, $NH_4$-N, and Chl-a showed addition trend. In the bottom water all water quality parameters except $NO_3$-N appeared addition processes indicating evidence of continuous nutrients suppliance into the bottom layer. The mixing modelling approach revealed that the biogeochemical processes in the lake consume $NO_3$-N and consequently added $NH_4$-N and $PO_4$-P to the bottom water during the summer seasons. The $NH_4$-N and $PO_4$-P appeared strong increase at the bottom water of the river-side of the lake and strong concentration gradient difference of dissolved oxygen also appeared in the same time. DISi exhibited continuous seasonal supply from spring to summer. Internal addition of $NH_4$-N and $PO_4$-P in the river-side of the lake were much higher than the dike-side, while the increase of DISi showed similar level both the dike and river sides. The temporal distribution of benthic flux for DISi indicates that addition of nutrients in the bottom water was strongly affected by other sources, for example, submarine ground-water discharge (SGD) through bottom sediment.

Regrowth Ability and Species Composition of Phytoplankton in International Commercial Ship's Ballast Water Berthed at Pusan and Daesan Ports (부산과 대산항에서 선박평형수에 유입된 식물플랑크톤의 종조성과 재성장능력)

  • Baek, Seung-Ho;Jang, Min-Chul;Shin, Kyoung-Soon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.2
    • /
    • pp.106-115
    • /
    • 2011
  • The aim of this study is to assess the importance of ballast water discharge as a vector for the introduction of exotic species into Pusan and Daesan Ports, Korea. We also examined to understand the impacts of environmental factors on the survival success of introduced species by ship's ballast water in laboratory experiments. Seven ship's ballast water originated from the coastal water of China (Taicang, Ningbo and Jinshan), Japan (Tokuyama, Moji and Akita), and Singapore. According to PCA (principal components analysis) analysis, environmental factor in the each ballast and shipside waters were different by bioregion. Based on cluster analysis, the phytoplankton community structures were distinguished for ballast water origin. Most of the major taxonomic groups were diatoms and, the others were dinoflagellate, silcoflagellate and several fresh-waters species. In particular, species number and standing crops of phytoplankton in the ballast tanks decreased with the increasing age ofballast water(r = -0.35 for standing crop; r = -0.63 for species number). In the laboratory study, although phytoplankton in ballast water treatment did not survive even in optimal temperature, the in vivo fluorescence of phytoplankton viability increased under the nutrient typical of shipside water and F/2 medium at $15^{\circ}C$ and $20^{\circ}C$. The diatoms species such as Skeletonema costatum and Thalassiosira pseudonana in ballast water were successfully regrown. On the salinity gradient experiments for Shui Shan (2) vessel, several freshwater species, brackish and marine species were successfully adapted. Of these, S.costatum was able to tolerate a wide range of salinities (10 to 30 psu) and its species-specific viability was suitable for colonization.

The Community Structure of Macrobenthic Assemblages in the Taehwa River Estuary, Ulsan, Korea (울산 태화강 하구역에 서식하는 대형저서동물의 군집구조)

  • Kim, Hyung-Chul;Choi, Byoung-Mi;Jung, Rae-Hong;Lee, Won-Chan;Yun, Jae-Seong;Seo, In-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.694-707
    • /
    • 2016
  • This study investigated the community structure of macrobenthic assemblages in the Taehwa River Estuary, Ulsan, Korea. Macrobenthos were collected with a Van Veen Grab Sampler during February and November 2012. The total species number and mean density were $176species/9.6m^2$ and $1,992inds./m^2$, respectively. Polychaetes were the most dominant faunal group in terms of species (91 species) and abundance ($1,463inds./m^2$). The major dominant species were polychaetes Minuspio japonica ($609{\pm}1,221inds./m^2$), Hediste japonica ($174{\pm}318inds./m^2$), Tharyx sp.1 ($106{\pm}283inds/m^2$), Lumbrineris longifolia ($79{\pm}207inds./m^2$), bivalve Theora fragilis ($114{\pm}272inds./m^2$) and amphipod Grandidierella japonica ($88{\pm}223inds./m^2$). Based on community statistics (cluster analysis and non-metric multidimensional scaling (nMDS) ordination), the macrobenthic community was divided into three station groups. Group I(freshwater dominated stations 2-6 with coarse sediment) was characterized by a high abundance of polychaetes Minuspio japonica, Hediste japonica, Capitella capitata, Pseudopolydora kempi, amphipods Grandidierella japonica and Apocorophium acutum. Group II (ecotone, stations 7-9 with mixed sediment) was numerically dominated by bivalve Theora fragilis, polychaetes Cirriformia tentaculata, Tharyx sp.1, Lumbrineris longifolia and Chaetozone sp. Finally, Group III (seawater dominated stations 10-12 with fine sediment) was characterized by a high density of polychaete Magelona japonica. These results showed that changes in salinity gradient and sedimentary characteristics were the main factors behind spatial changes in the macrobenthic communities of the Taehwa River Estuary.

Physicochemical Properties and Microbial Analysis of Korean Solar Salt and Flower of Salt (한국산 꽃소금과 천일염의 이화학적 특성 및 미생물 분석)

  • Lee, Hye Mi;Lee, Woo Kyoung;Jin, Jung Hyun;Kim, In Cheol
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.7
    • /
    • pp.1115-1124
    • /
    • 2013
  • The present study was conducted to ensure the diversity of domestic solar salt by analyzing the composition and microbiological characteristics of solar salt (from Docho island: DS) and the flower of salt produced in different Korean salt flats (Sinui island: SF, Bigum island: BF, and Docho island: DF). The analyses showed that the moisture content of the three types of flower of salt and solar salt ranged from 10.54~13.82% and NaCl content ranged from 78.81~84.61%. The mineral content of those salts ranged from 3.57~5.51%. The content of insoluble matter in these salts was $0.01{\pm}0.00{\sim}0.05{\pm}0.00%$. The sand content of these salts was $0.01{\pm}0.01{\sim}0.03{\pm}0.01%$. By Hunter's color value analysis, the color of the flower of salt was brighter and whiter than solar salt. The salinity of the flower of salt was a little higher than solar salt as well. The magnesium and potassium ion content of DF was $9,886.72{\pm}104.78mg/kg$ and $2,975.23{\pm}79.73mg/kg$, respectively, which was lower than the content in SF, BF, and DS. The heavy metal content of all salts was acceptable under the Korean Food Sanitation Law. The flower of salt was confirmed to be sweeter and preferable to solar salt. More than 80% of the solar salt crystals were 2~3 mm in size, whereas crystals from the flower of salt were 0.5~2 mm in size. The bacterial diversity of DF and DS were investigated by culture and denaturing gradient gel electrophoresis (DGGE) methods. The number of cultured bacteria in flower of salt was approximately three times more than solar salt. By DGGE analysis, major microbes of DF were Maritimibacter sp., Cupriavidus sp., and unculturable bacteria, and those of DS were Cupriavidus sp., Dunalidella salina and unculturable bacteria. The results of DGGE analysis showed that major microorganisms in solar salts were composed of unidentified and unculturable bacteria and only a few microorganisms were culturable.

Relationship between the Catches of Tuna and Oceanographic Conditions in the South-East Pacific (남동 태평양의 참치 어획양과 해양환경과의 관계)

  • CHO Kyu-Dae;KIM Yun-Ae;PARK Sung-Woo;KIM Jae-Chul;PARK Jae-Chul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.4
    • /
    • pp.360-369
    • /
    • 1987
  • The relationship between the catches of tuna and hydrographic conditions in South-East Pacific region (latitude $5^{\circ}N-12^{\circ}S$, longitude $135^{\circ}W-115^{\circ}W$) was investigated by using the catch data of tuna and Digital Bathythermograph (DBT) data from December 9, 1980 to April 2, 1981. The results are as follows : The study area were located in South Eguatorial Current regions including equatorial upwelling regions in $5^{\circ}N\;to\;12^{\circ}S$. The horizontal mean temperature at the depth of 10m on the first quarter months in the study area was about $25^{\circ}C$C and the salinity of those fishing areas ranged from 34.8 to $35.0\%_{\circ}$. Yellowfin tuna and bigeye tuna were mainly caught in SW vertical temperature profile type, which the depth of thermocline ranged from loom to 300m, and temperature difference of thermocline was about $12^{\circ}C$. The deeper the depth of thermocline, the more the catches of tuna. While albacore tuna was caught well in SS vertical temperature profile type which the temperature of thermocline ranged from $9^{\circ}\;to\;26^{\circ}C$ and its gradient was very smooth. The depth of 1 ml/l surface of dissoved oxygen content ranged from loom to 200m in the South-East Pacific between longitude $140^{\circ}W-100^{\circ}W$, but it was shallower than 100 m near the North-South American continent. The catches of bigeye tuna were larger than those of yellowfin tuna in South Equatorial Current region. As approaching to the South and North American continent, the catches of yellowfin tuna and bigeye tuna decreased because the thermocline becomes shallower and steeper and the depth of the 1 m1/1 surface of dissolved oxygen content became shallower.

  • PDF

Organic carbon behavior and distribution in the Mankyoung River Estuary (만경강 하구역의 유기탄소 거동 및 분포)

  • Park Jun-Kun;Kim Eun-Soo;Kim Kyung-Tae;Cho Sung-Rok;Park Yong-Chul
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.3
    • /
    • pp.131-140
    • /
    • 2006
  • Suspended particulate matter and organic carbon were measured in the Mankyoung river estuary in February, May, July and August 2003. There was a large variance in river discharge between the dry season of February and May and the wet season of July and August. The influx of dissolved organic carbon into the estuary was $8.16{\times}10^2tonC\;month^{-1}$ in the dry season and $5.77{\times}10^3tonC\;month^{-1}$ in the wet season. The influx of particulate organic carbon was $9.37{\times}10^2tonC\;month^{-1}$ and $3.14{\times}10^4tonC\;month^{-1}$ in the dry and wet seasons, respectively. Especially, dissolved organic carbon in the northern part of the site inside the dike was increased in July when torrential rainfall was high. In the research, the distribution of dissolved organic carbon showed conservative behavior with the salinity gradient in the estuary, suggesting that physical mixing between seawater and freshwater dominates the distribution pattern of the dissolved organic carbon in the system. However 60 to 90% of the particulate organic carbon introduced into the estuary was removed from the surface water at the upper estuarine mixing zone of low salinities, showing non-conservative behavior similar with suspended particulate matte r. The completion of the Saemangum Dike is likely to inhibit the exchange of materials between open sea and the Mankyoung estuary. This suggests that the oxidation of organic carbon in the bottom of the estuary may exhaust dissolved oxygen in the confined environment.

  • PDF