DOI QR코드

DOI QR Code

Toxicological Assessment to Environmental Stressors Using Exoskeleton Surface Roughness in Macrophthalmus japonicus: New Approach for an Integrated End-point Development

칠게 외골격 표면 거칠기를 이용한 노출 독성 평가: 새로운 융합적 연구

  • Park, Kiyun (Fisheries Science Institute, Chonnam National University) ;
  • Kwak, Ihn-Sil (Fisheries Science Institute, Chonnam National University)
  • 박기연 (전남대학교 수산과학연구소) ;
  • 곽인실 (전남대학교 수산과학연구소)
  • Received : 2021.11.30
  • Accepted : 2021.12.13
  • Published : 2021.12.31

Abstract

Intertidal mud crab (Macrophthalmus japonicus) is an organism with a hard chitinous exoskeleton and has function for an osmotic control in response to the salinity gradient of seawater. Crustacean exoskeletons change in their natural state in response to environmental factors, such as changes in the pH and water temperature, and the presence of pollutant substances and pathogen infection. In this study, the ecotoxicological effects of irgarol exposure and heavy metal distribution were presented by analyzing the surface roughness of the crab exoskeleton. The exoskeleton surface roughness and variation reduced in M. japonicus exposed to irgarol. In addition, it was confirmed that the surface roughness and variation were changed in the field M. japonicus crab according to the distribution of toxic heavy metals(Cd, Pb, Hg) in marine sediments. This change in the surface roughness of the exoskeleton represents a new end-point of the biological response of the crab according to external environmental stressors. This suggests that it may affect the functional aspects of exoskeleton protection, support, and transport. This approach can be utilized as a useful method for monitoring the aquatic environment as an integrated technology of mechanical engineering and biology.

갑각류 외골격은 키틴질로 이루어져 있고 외부자극에 보호와 지지를 위해 주요한 기능을 한다. 수환경은 물리적 변화뿐만 아니라 다양한 해양 오염에 끊임없이 영향을 받고 그 환경에 서식하는 생물은 생존을 위해 생물학적으로 반응한다. 본 연구에서는 이르가롤 독성노출이나 퇴적환경 중금속 분포에 따라 서식하는 칠게의 외골격 표면조도 분석을 통한 생태독성 종말점이 될 수 있음을 제시하였다. 칠게의 외골격 표면 조도는 이르가롤 노출에 대해 거칠기(Ra)도 감소하고 조도 변이(variation)도 줄어들었다. 또한 해양 연안 퇴적물 내 중금속(Cd, Pb, Hg) 분포에 따라 서식하는 칠게에서 표면 거칠기 및 변이가 변화하는 것을 확인하였다. 이러한 외골격 표면 거칠기의 변화는 외부환경 스트레스 요인에 따른 칠게의 생물학적인 반응 종말점(end-point)을 나타내며 나아가 외골격의 보호, 지지, 수송 등의 기능적 면에 영향을 미칠 수 있음을 시사한다. 이러한 접근방법은 공학과 생물의 융합적 기술로 수환경 모니터링을 위한 유용한 방법으로 활용될 수 있을 것이다.

Keywords

Acknowledgement

이 논문은 한국연구재단 중점연구사업[NRF-2018-R1A6A1A-03024314]과 전남대학교[grant number 2016-2692] 지원을 받아 수행된 연구임.

References

  1. ANSI (American National Standards Institute). 1986. Surface texture (surface roughness, waviness and lay). The American Society of Mechanical Engineers 4-10.
  2. Chen, P.Y., A.Y.M. Lin, J. McKittrick and M.A. Meyers. 2008. Structure and mechanical properties of crab exoskeletons. Acta Biomaterialia 4: 587-596. https://doi.org/10.1016/j.actbio.2007.12.010
  3. Cho, J., S. Hyun, J.H. Han, S. Kim and D.H. Shin. 2015. Historical trend in heavy metal pollution in core sediments from the Masan Bay, Korea. Marine Pollution Bulletin 95: 427-432. https://doi.org/10.1016/j.marpolbul.2015.03.034
  4. Gagne, F., C. Blaise and J. Pellerin. 2005. Altered exoskeleton composition and vi- tellogenesis in the crustacean Gammarus sp. Collected at polluted sites in the Saguenay Fjord, Quebec, Canada. Environmental Research 98: 89-99. https://doi.org/10.1016/j.envres.2004.09.008
  5. Glenn, R. and T. Pugh. 2006. Epizootic shell disease in American lobster (Homarus americanus) in Massachussetts coastal waters: interactions of temperature, maturity and intermolt duration. Journal of Crustacean Biology 26: 639-645. https://doi.org/10.1651/S-2754.1
  6. Herman, P.M.J., J.J. Middelburg, J. Van de Koppel and C.R. Heip. 1999. Nutrients in estuaries, p. 195-240. In: Advances in ecological research: Estuaries (Nedwell, D.B. and D.G. Raffaelli, eds.). Academic Press, San Diego, CA.
  7. Kim, S.U., T.R. Kim, E.S. Lee, M.S. Kim, C.K. Kim, L.R. Kim and G.Y. Shin. 2015. Formaldehyde and heavy metal migration from rubber and metallic packaging/utensils in Korea. Food Additives & Contaminants: Part B Surveillance 8: 7-11. https://doi.org/10.1080/19393210.2014.943303
  8. Kim, W.S., C. Hong, K. Park and I.S. Kwak. 2019. Ecotoxicological response of Cd and Zn exposure to a field dominant species, Chironomus plumosus. Korean Journal of Ecology and Environment 52: 266-273. https://doi.org/10.11614/KSL.2019.52.3.266
  9. Kitaura, J., M. Nishida and K. Wada. 2002. Genetic and behavioral diversity in the Macrophthalmus japonicus species complex (Crustacea: Brachyura: Ocypodidae). Marine Biology 140: 1-8. https://doi.org/10.1007/s002270100619
  10. Liu, Z., S. Pan, Z. Sun, R. Ma, L. Chen, Y. Wang and S. Wang. 2015. Heavy metal spatial variability and historical changes in the Yangtze River estuary and North Jiangsu tidal flat. Marine Pollution Bulletin 98: 115-129. https://doi.org/10.1016/j.marpolbul.2015.07.006
  11. Luft, A., M. Wagner and T.A. Ternes. 2014. Transformation of biocides irgarol and terbutryn in the biological waste water treatment. Environmental Science & Technology 48: 244-254. https://doi.org/10.1021/es403531d
  12. Luo, J., S. Pei, W. Jing, E. Zou and L. Wang. 2015. Cadmium inhibits molting of the freshwater crab Sinopotamon henanense by reducing the hemolymph ecdysteroid content and the activities of chitinase and N-acetyl-β-glucosaminidase in the epidermis. Comparative Biochemistry and Physiology Part C: Toxicolology & Pharmacolology 169: 1-6. https://doi.org/10.1016/j.cbpc.2014.10.003
  13. Luo, W., Y. Lu, T. Wang, P. Kong, W. Jiao, W. Hu, J. Jia, J.E. Naile, J.S. Khim and J.P. Giesy. 2013. Environmental concentrations and bioaccumulations of cadmium and zinc in coastal watersheds along the Chinese Northern Bohai and Yellow Seas. Environmental Toxicology and Chemistry 32: 831-840. https://doi.org/10.1002/etc.2136
  14. Mali, B., F. Mohrlen, M. Frohme and U. Frank. 2004. A putative double role of a chitinase in a cnidarian: pattern formation and immunity. Developmental & Comparative Immunology 28: 973-981. https://doi.org/10.1016/j.dci.2004.04.002
  15. Melnick, C.A., Z. Chen and J.J. Mecholsky Jr. 1996. Hardness and toughness of exoskeleton material in the stone crab, Menippe mercenaria. Journal of Materials Research 11: 2903-2907. https://doi.org/10.1557/JMR.1996.0367
  16. Mok, J.S., H.D. Yoo, P.H. Kim, H.D. Yoon, Y.C. Park, T.S. Lee, J.Y. Kwon, K.T. Son, H.J. Lee, K.S. Ha, K.B. Shim and J.H. Kim. 2015. Bioaccumulation of heavy metals in oysters from the southern coast of Korea: assessment of potential risk to human health. Bulletin of Environmental Contamination and Toxicology 94: 749-755. https://doi.org/10.1007/s00128-015-1534-4
  17. Otania, S., Y. Kozukib, R. Yamanakab, H. Sasaokac, T. Ishiyamac, O. Yoshihito, H. Sakaic and Y. Fujiki. 2010. The role of crabs(Macrophthalmus Japonicus) burrows on organic carbon cycle in estuarine tidal flat, Japan. Estuarine, Coastal and Shelf Science 86: 434-440. https://doi.org/10.1016/j.ecss.2009.07.033
  18. Park, K., T.S. Kwak and I.S. Kwak. 2014. Vitellogenin gene characterization and expression of Asian paddle crabs (Charybdis japonica) following endocrine disrupting chemicals. Ocean Science Journal 49: 127-135. https://doi.org/10.1007/s12601-014-0013-x
  19. Park, K., C. Nikapitiya, W.S. Kim, T.S. Kwak and I.S. Kwak. 2016. Changes of exoskeleton surface roughness and expression of crucial participation genes for chitin formation and digestion in the mud crab (Macrophthalmus japonucus) following the antifouling biocide irgarol. Ecotoxicology and Environmental Safety 132: 186-195. https://doi.org/10.1016/j.ecoenv.2016.06.005
  20. Park, K., T.S. Kwak, W.S. Kim and I.S. Kwak. 2019. Changes in exoskeleton surface roughness and expression of chitinase genes in mud crab Macrophthalmus japonicus following heavy metal differences of estuary. Marine Pollution Bulletin 138: 11-18. https://doi.org/10.1016/j.marpolbul.2018.11.016
  21. Prosser, C.L., S.W. Green and T.S. Chow. 1955. Ionic and osmotic concentrations in blood and urine of Pachygrapsus crassipes acclimated to different salinities. Biology Bulletin 109: 99-107. https://doi.org/10.2307/1538662
  22. Robohm, R., A. Draxler, D. Wieczorek, D. Kapareiko and S. Pitchford. 2005. Effects of environmental stressors on disease susceptibility in American lobster: a controlled laboratory study. Journal of Shellfish Research 24: 773-780. https://doi.org/10.2983/0730-8000(2005)24[773:EOESOD]2.0.CO;2
  23. Sanchez, C., H. Arribart and M.M. Giraud-Guille. 2005. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nature Materials 4: 277-288. https://doi.org/10.1038/nmat1339
  24. Sapozhnikova, Y., E. Wirth, K. Schiff and M. Fulton. 2013. Antifouling biocides in water and sediments from California marinas. Marine Pollution Bulletin 69: 189-194. https://doi.org/10.1016/j.marpolbul.2013.01.039
  25. Vincent, J.F.V. 2002. Arthropod cuticle: a natural composite shell system. Composites A33: 1311-1315. https://doi.org/10.1016/S1359-835X(02)00167-7
  26. Walters, D.M., E. Rosi-Marshall, T.A. Kennedy, W.F. Cross and C.V. Baxter. 2015. Mercury and selenium accumulation in the Colorado River food web, Grand Canyon, USA. Environmental Toxicology and Chemistry 34: 2385-2394. https://doi.org/10.1002/etc.3077
  27. Zhao, S., C. Feng, W. Quan, X. Chen, J. Niu and Z. Shen. 2012. Role of living environments in the accumulation characteristics of heavy metals in fishes and crabs in the Yangtze River Estuary, China. Marine Pollution Bulletin 64: 1163-1171. https://doi.org/10.1016/j.marpolbul.2012.03.023