DOI QR코드

DOI QR Code

혼합모델을 이용한 새만금호 저층수 내 영양염의 공급과 제거에 관한 연구

Estimation of Addition and Removal Processes of Nutrients from Bottom Water in the Saemangeum Salt-Water Lake by Using Mixing Model

  • 정용훈 (군산대학교 해양학과) ;
  • 김창식 (한국해양과학기술원 연안재해.재난연구센터) ;
  • 양재삼 (군산대학교 해양학과)
  • Jeong, Yong Hoon (Department of Oceanography, Kunsan National University) ;
  • Kim, Chang Shik (Coastal Disaster Research Center, Korea Institute of Ocean Science & Technology) ;
  • Yang, Jae Sam (Department of Oceanography, Kunsan National University)
  • 투고 : 2014.07.16
  • 심사 : 2014.11.10
  • 발행 : 2014.11.25

초록

이 연구는 새만금 방조제가 조성된 이후 새만금호에서 영양염($NO_3$-N, $NO_2$-N, $NH_4$-N, TN, $PO_4$-P, TP, DISi)의 거동을 이해하기 위해 수행되었으며, 특히 2008년~2010년까지 새만금호의 표층과 저층에서 매월 관측된 환경인자(수온, 염분, 용존산소, 부유물질, Chl-a)와 상호 비교하여 특징을 논의하였다. 표층에서 $NO_3$-N, TP, $PO_4$-P, DISi는 제거현상을 보였고, $NO_2$-N, $NH_4$-N, Chl-a는 첨가현상을 보였다. 저층에서는 $NO_3$-N을 제외하고 모든 항목들이 첨가현상을 보였다. 따라서 $NO_3$-N을 제외한 나머지 영양염들은 저층수에서 지속적으로 공급되고 있음을 의미한다. 혼합모델을 이용하여 저층수에서 영양염의 거동을 분석한 결과, 생지화학적 과정에 의해 $NO_3$-N이 주로 하계에 감소되는 것으로 나타났고, $NH_4$-N과 $PO_4$-P는 하계에 증가되는 것으로 나타났다. 특히 $PO_4$-P와 $NH_4$-N의 증가는 강하구 쪽에서 더욱 뚜렷하게 나타났고, 표층과 저층 사이의 DO의 농도 차이와 강한 양의 상관성을 보였다. DISi도 저층수에서 지속적으로 공급되고 있음을 보였으나, $NH_4$-N과 $PO_4$-P와는 다르게 하계뿐만 아니라 춘계에도 공급되는 경향을 보였다. 또한 $NH_4$-N과 $PO_4$-P가 방조제 쪽보다 하구 쪽에서 더 많이 공급되는 것과는 다르게 DISi는 양쪽에서 유사하게 공급됨을 보였다. 이러한 DISi의 특징은 퇴적물로부터 분자확산에 의한 flux를 계산한 결과, 저층수에서 공급되는 영양염은 퇴적물로부터 용출되는 것 이외에 SGD 등 다른 유입기원이 있는 것을 암시한다.

This study has been executed to understand the additional and removal processes of nutrients in the Saemangeum Salt-water Lake, and discussed with other monthly-collected environmental parameters such as water temperature, salinity, dissolved oxygen, suspended solids, and Chl-a from 2008 to 2010. $NO_3$-N, TP, $PO_4$-P, and DISi showed the removal processes along with the salinity gradients at the surface water of the lake, whereas $NO_2$-N, $NH_4$-N, and Chl-a showed addition trend. In the bottom water all water quality parameters except $NO_3$-N appeared addition processes indicating evidence of continuous nutrients suppliance into the bottom layer. The mixing modelling approach revealed that the biogeochemical processes in the lake consume $NO_3$-N and consequently added $NH_4$-N and $PO_4$-P to the bottom water during the summer seasons. The $NH_4$-N and $PO_4$-P appeared strong increase at the bottom water of the river-side of the lake and strong concentration gradient difference of dissolved oxygen also appeared in the same time. DISi exhibited continuous seasonal supply from spring to summer. Internal addition of $NH_4$-N and $PO_4$-P in the river-side of the lake were much higher than the dike-side, while the increase of DISi showed similar level both the dike and river sides. The temporal distribution of benthic flux for DISi indicates that addition of nutrients in the bottom water was strongly affected by other sources, for example, submarine ground-water discharge (SGD) through bottom sediment.

키워드

참고문헌

  1. Balls, P.W., 1994, "Nutrient inputs to estuaries from nine scottish east coast rivers; influence of estuarine processes on inputs to the North Sea", Estuarine Coastal Shelf Sci., Vol. 39, 329-352. https://doi.org/10.1006/ecss.1994.1068
  2. Beck, A.J., Tsukamoto, Y., Tovar-Sanchez, A., Huerta-Diaz, M., Bokuniewicz, H.J. and Sanudo-Wilhelmy, S.A., 2007, "Importance of geochemical transformations in determining submarine groundwater discharge-derived trace metal and nutrient fluxes", Appl. Geochem., Vol. 22, 477-490. https://doi.org/10.1016/j.apgeochem.2006.10.005
  3. Bowes, M.J. and House, W.A., 2001, "Phosphorus and dissolved silicon dynamics in the River Swale catchment, UK: a mass-balance approach", Hydrol. Process., Vol. 15, 261-280. https://doi.org/10.1002/hyp.157
  4. Burnett, W.C., Bokuniewicz, H., Huettel, M., Moor, W.S. and Taniguchi, M., 2003, "Groundwater and pore water inputs to the coastal zone", Biogeochemistry, Vol. 66, 3-33. https://doi.org/10.1023/B:BIOG.0000006066.21240.53
  5. Burnett, W.C., Wattayakorn, G., Taniguchi, M., Dulaiova, H., Sojisuporn, P., Rungsupa, S. and Ishitobi, T., 2007, "Groundwater-derived nutrient inputs to the Upper Gulf of Thailand", Cont. Shelf Res., Vol. 27, 176-190. https://doi.org/10.1016/j.csr.2006.09.006
  6. Calloway, R.J. and Specht, D.T., 1982, "Dissolved silicon in the Yaquina estuary, Oregon", Estuarine Coastal Mar. Sci., Vol. 15, 561-567. https://doi.org/10.1016/0272-7714(82)90007-5
  7. Conley, D.J. and Malone, T.C., 1992, "Annual cycle of dissolved silicate in Chesapeake Bay: implications for the production and fate of phytoplankton biomass", Mar. Ecol. Prog. Ser., Vol. 81, 121-128. https://doi.org/10.3354/meps081121
  8. Diaz, J.R. and Rosenberg, R., 1995, "Marine benthic hypoxia: a review of its ecological effects and the behavioral responses of benthic macrofauna", Oceanogr. Mar. Biol. Annu. Rev., Vol. 33, 245-303.
  9. Fisher, T.R., Harding, L.W., Stanley, D.W. and Ward, L.G., 1988, "Phytoplankton, nutrients, and turbidity in the Chesapeake, Delaware, and Hudson estuaries", Estuarine Coastal Shelf Sci., Vol. 27, 61-93. https://doi.org/10.1016/0272-7714(88)90032-7
  10. Fox, L.E., Sager, S.L. and Wofsy, S.C., 1986, "The chemical control of soluble phosphorus in the Amazon estuary", Geochim. Cosmochim. Acta, Vol. 50, 783-794. https://doi.org/10.1016/0016-7037(86)90354-6
  11. Gardner, W.S., Seitzinger, S.P. and Malczyk, J.M., 1991, "The effects of sea salts on the forms of nitrogen released from estuarine and freshwater sediments: does ion pairing affect ammonium flux?", Estuaries, Vol. 14, 157-166. https://doi.org/10.2307/1351689
  12. Guillaud, J.-F., Andrieux, F. and Menesguen, A., 2000, "Biogeochemical modelling in the Bay of Seine (France): an improvement by introducing phosphorus in nutrient cycles", J. Mar. Syst., Vol. 25, 369-386. https://doi.org/10.1016/S0924-7963(00)00028-2
  13. Hansen, H.P. and Koroleff, F., 1999, Determination of Nutrient. In: Methods of Seawater Analysis. edited by K. Grasshoff, K. Kremling and M. Ehrhardt, Wiley-VCH, New York, pp. 159-228.
  14. Hansen, J.I., Henriksen, K. and Blackburn, T.H., 1981, "Seasonal distribution of nitrifying bacteria and rates of nitrification in coastal marine sediments", Microb. Ecol., Vol. 7, 297-304. https://doi.org/10.1007/BF02341424
  15. Hargreaves, J.A., 1998, "Nitrogen biogeochemistry of aquaculture ponds 1", Auaculture, Vol. 166, 181-212.
  16. Herbert, R.A., 1999, "Nitrogen cycling in coastal marine ecosystems", FEMS Microbiol. Rev., Vol. 23, 563-590. https://doi.org/10.1111/j.1574-6976.1999.tb00414.x
  17. Hwang, D.W., Kim, G., Lee, Y.W. and Yang, H.S., 2005, "Estimating submarine inputs of groundwater and nutrients to a coastal bay using radium isotopes", Mar. Chem., Vol. 96, 61-71. https://doi.org/10.1016/j.marchem.2004.11.002
  18. Jensen, H.S., Kristensen, P., Jeppesen, E. and Skytthe, A., 1992, "Iron:phosphorus ratio in surface sediment as an indicator of phosphorus release from aerobic sediments in shallow lakes", Hydrobiologia, Vol. 235-236, 731-743. https://doi.org/10.1007/BF00026261
  19. Jeong, Y.H. and Yang, J.S., 2014, "The long-term variations of water qualities in the Saemangeum salt-water lake after the sea-dike construction", J. Kor., Soc., Mar., Environ. Ener., submitted.
  20. Jorgensen, K.S., 1989, "Annual pattern of denitrification and nitrate ammonification in an estuarine sediment", Appl. Environ. Microbiol., Vol. 55, 1841-1847.
  21. Ki, J.H., 1987, The study of Nutrients Cycling in the Keum River Estuary, MS thesis, Seoul National University, 125p.
  22. Kim, D.-H. and Park, C.-K., 1998, "Estimation of nutrients released from sediments of Deukryang Bay", J. of Korean Env. Sci. Soc., Vol. 7, 425-431.
  23. Kim, G., Ryu, J.W. and Hwang, D.W., 2008, "Radium tracing of submarine groundwater discharge (SGD) and associated nutrient fluxes in a highly-permeable bed coastal zone, Korea", Mar. Chem., Vol. 109, 307-317. https://doi.org/10.1016/j.marchem.2007.07.002
  24. Kim, G., Ryu, J.W., Yang, H.S. and Yun, S.T., 2005, "Submarine groundwater discharge (SGD) into the Yellow Sea revealed by $^{228}Ra\;and\;^{226}Ra$ isotopes: Implications for global silicate fluxes", Earth Planet. Sci. Lett.,Vol. 237, 156-166. https://doi.org/10.1016/j.epsl.2005.06.011
  25. Kim, H., Lee, H., Choi, J.H. and Park, S.S., 2007, "A modeling study for change of tidal zone and flushing rate by the construction of sea dike", J. of KSEE., Vol. 29, 1106-1113.
  26. Kim, S.-H., Kim, K., Lee, M., Jeong, H.-J., Kim, W.-J., Park, J.-G. and Yang, J.S., 2009, "Enhanced benthic nutrient flux during monsoon periods in a coastal lake formed by tideland reclamation", Estuar. Coast., Vol. 32, 1165-1175. https://doi.org/10.1007/s12237-009-9217-1
  27. KORDI(Korea Ocean Research and Development Institute), 2007, Integrated Preservation Study on the Marine Environments in the Saemangeum Area(1st Year of 2nd phase, 2007) - Water Quality Monitoring, 321p.
  28. Lee, S.H. and Yang, J.S., 1997, "500-days continuous observation of nutrients, chlorophyll, suspended solid and salinity in the Keum Estuary, Korea", The Sea, J. Korean Soc. Oceanogr., Vol. 2, 1-7.
  29. Lie, H.-J., Cho, C.-H., Lee, S and Kim, E.-S., 2008, "Changes in marine environment by a large coastal development of the Saemangeum reclamation project in Korea", Ocean and Polar Res., Vol. 30, 475-484. https://doi.org/10.4217/OPR.2008.30.4.475
  30. Lofgren, S. and Bostrom, B., 1989, "Interstitial water concentrations of phosphorus, iron and manganese in a shallow, eutrophic Swedish lake-implications for phosphorus cycling", Wat. Res., Vol. 23, 1115-1125. https://doi.org/10.1016/0043-1354(89)90155-3
  31. Macfarlane, G.T. and Herbert, R.A., 1984, "Effect of oxygen tension, salinity, temperature an organic matter concentrations on the growth and nitrifying activity of an estuarine strain of Nitrosomonas", FEMS Microbiol. Lett., Vol. 23, 2301-2308.
  32. Markager, S., Stedmon, C.A. and Sondergaard, M., 2011, "Seasonal dynamics and conservative mixing of dissolved organic matter in the temperate eutrophic estuary Horsens Fjord", Estuarine Coastal Shelf Sci., Vol. 92, 376-388. https://doi.org/10.1016/j.ecss.2011.01.014
  33. Mayer, L.M. and Gloss, S.P., 1980, "Buffering of silica and phosphate in a turbid river", Limnol. Oceanogr., Vol. 25, 12-22. https://doi.org/10.4319/lo.1980.25.1.0012
  34. MLTMA (Ministry of Land, Transport and Maritime Affairs), 2011, Saemangeum Coastal System Research for Marine Environmental Conservation, 893p.
  35. Morris, A.W., 1985, Estuarine chemistry and general survey strategy. In: Practical estuarine chemistry, edited by P.C. Head. Cambridge University Press, pp. 1-60.
  36. Parsons, T.R., Maita, Y. and Lalli, C.M., 1984, A Manual of Chemical and Biological Methods for Seawater Analysis", Pergamon Press, 173p.
  37. Pastuszak, M., Witek, Z., Nagel, K., Wielgat, M. and Grelowski, A., 2005, "Role of the Oder estuary (southern Baltic) in transformation of the riverine nutrient loads", J. Mar. Syst., Vol. 57, 30-54. https://doi.org/10.1016/j.jmarsys.2005.04.005
  38. Rendell, A.R., Horrobin, T.M., Jickells, T.D., Edmunds, H.M., Brown, J. and Malcolm, S.J., 1997, "Nutrient cycling in the Great Ouse Estuary and its impact on nutrient fluxes to the Wash, England", Estuarine, Coastal Shelf Sci., Vol. 45, 653-668. https://doi.org/10.1006/ecss.1996.0226
  39. Rysgaard, S., Risgaard-Petersen, N. and Sloth, N.P., 1996, "Nitrification, denitrification, and nitrate ammonification in sediments of two coastal lagoons in Southern France", Hydrobiologia, Vol. 329, 133-141. https://doi.org/10.1007/BF00034553
  40. Santos, I.R., Burnett, W.C., Dittmar, T., Suryaputra, I.G.N.A. and Chanton, J., 2009, "Tidal pumping drives nutrient and dissolved organic matter dynamics in a Gulf of Mexico subterranean estuary", Geochim. Cosmochim. Acta, Vol. 73, 1325-1339. https://doi.org/10.1016/j.gca.2008.11.029
  41. Schulz, H.D., 2000, Quantification of early diagenesis: Dissolved constituents in marine pore water. In: Schulz, H.D. and M. Zabel (eds.), Marine geochemistry. Springer, Berlin, pp. 85-128.
  42. Seitzinger, S.P., 1988, "Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance", Limnol. Oceanogr., Vol. 33, 702-724. https://doi.org/10.4319/lo.1988.33.4_part_2.0702
  43. Sholkovitz, E.R., 1976, "Flocculation of dissolved organic and inorganic matter during the mixing of river water and seawater", Geochim. Cosmochim. Acta, Vol. 40, 831-845. https://doi.org/10.1016/0016-7037(76)90035-1
  44. Solorzano, L., 1969, "Determination of ammonia in natural waters by the phenolhypochlorite method", Limnol. Oceanogr., Vol. 14, 799-801. https://doi.org/10.4319/lo.1969.14.5.0799
  45. Sondergaard, M., Jensen, J.P. and Jeppesen, E., 2003, "Role of sediment and internal loading of phosphorus in shallow lakes", Hydrobiologia, Vol. 506-509, 135-145. https://doi.org/10.1023/B:HYDR.0000008611.12704.dd
  46. Wu, R.S.S., 2002, "Hypoxia: from molecular responses to ecosystem responses", Mar. Pollut. Bull., Vol. 45, 35-45. https://doi.org/10.1016/S0025-326X(02)00061-9
  47. Yang, J.S., Jeong, J.Y., Heo, J.T., Lee, S.H. and Choi, J.Y., 1999, "Chemical mass balance of materials in the Keum River Estuary 1. Seasonal distribution of nutrients", The Sea, J. Korean Soc. Oceanogr., Vol. 4, 71-79.
  48. Yang, J.S., Jeong, Y.H., Ji, K.H., Kim, H.S., Choi, J.H. and Kim, W.J., 2008, "The early-stage changes of water qualities after the Saemangeum sea-dike construction", J. Kor. Soc. Mar. Environ. Eng., Vol. 11, 199-213.

피인용 문헌

  1. The Long-term Variations of Water Qualities in the Saemangeum Salt-Water Lake after the Sea-dike Construction vol.18, pp.2, 2015, https://doi.org/10.7846/JKOSMEE.2015.18.2.51