• Title/Summary/Keyword: salinity effects

Search Result 514, Processing Time 0.034 seconds

Effects of Ozone and Soil Salinity, Singly and in Combination, on Growth, Yield and Leaf Gas Exchange Rates of Two Bangladeshi Wheat Cultivars

  • Kamal, Mohammed Zia Uddin;Yamaguchi, Masahiro;Azuchi, Fumika;Kinose, Yoshiyuki;Wada, Yoshiharu;Funada, Ryo;Izuta, Takeshi
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.2
    • /
    • pp.173-186
    • /
    • 2015
  • In Bangladesh, increases in the tropospheric ozone ($O_3$) concentration and in soil salinization may lead to crop damage. To clarify the effects of $O_3$ and/or soil salinity on Bangladeshi wheat cultivars, BAW1059 (salt-tolerant) and Shatabdi (salt-sensitive) were exposed to 70-day treatments with $O_3$ (charcoal-filtered air (CF), $1.0{\times}O_3$, and $1.5{\times}O_3$) and different levels of soil salinity (0, 4, and $8dS\;m^{-1}$). In both cultivars, the whole-plant dry mass and grain yield were significantly reduced by exposure to $O_3$. Increased soil salinity caused significant reductions in whole-plant growth and yield in Shatabdi, but the reductions were negligible in BAW1059. No significant interactions between $O_3$ and salinity were detected for growth, yield, and leaf gas exchange parameters in both cultivars. We concluded that the effects of $O_3$ are not ameliorated by soil salinity in two Bangladeshi wheat cultivars, regardless of their salinity tolerance.

Studies on Salinity and Growth of Rice at Seosan Reclaimed Land (서산 간척지의 염도와 벼의 생육에 관한 연구)

  • 이희선;김옥봉
    • The Korean Journal of Ecology
    • /
    • v.20 no.5
    • /
    • pp.367-373
    • /
    • 1997
  • The effects of salinity on the growth and production of rice were studied at Seosan reclaimed land from July to October, 1995. The plant height, the number of living aleaves, dead leaves and total leaves, the number of the grains and the dry weight of the grains per individual, and the dry weight of above the ground in $25cm{\times}25cm$ quadrat were investigated on 5 plots whers were different salinity. The plant height, the number of living leaves and total leaves and the number of grains and the dry weight of grains per individual, and the dry weight of above the ground decreased as the salinity of water increase and the number of dead leaves of rice increased as the salinity of water decrease. The effect of salinity on the reproductive production is severer than the vegetative production. Because of the salinity, the growth and the production of the rice at Seosan reclaimed land are worse than the normal rice field.

  • PDF

The Effect of Salinity (NaCl) on the Germination and Seedling of Sugar Beet (Beta vulgaris L.) and Cabbage (Brassica oleracea L.)

  • Jamil, M.;Rha, Eui-Shik
    • Plant Resources
    • /
    • v.7 no.3
    • /
    • pp.226-232
    • /
    • 2004
  • This study was carried out to investigate seed germination and seedling of cabbage and sugar beet in four treatments of salinity including 0 (control), 0.5, 1.0 and 1.5% NaCl. The results showed that different treatments of salinity had considerable effects on the germination and root and shoot length of cabbage and sugar beet. Percent of germination in both species showed significant decrease with increasing salinity up to 1.5% NaCl. This decrease was more evident in cabbage when compared to sugar beet. The required time for germination increased with high levels of salinity. The seedling growth of both species were inhibited by all salinity levels. Particularly at 1.0 and 1.5% NaCl, no measurable length was observed in cabbage and sugar beet. At 0.5% NaCl root growth of both plant species was more affected as compared to shoot growth by salinity.

  • PDF

The effects of hypo-salinity on embryos and larvae of olive flounder (Paralichthys olivaceus)

  • Min, Eun-Young;Lee, Ok-Hyun;Kang, Ju-Chan
    • Journal of fish pathology
    • /
    • v.20 no.3
    • /
    • pp.257-267
    • /
    • 2007
  • The hypo-salinity effects on fertilized eggs, embryos and larvae were investigated in olive flounder (Paralichthys olivaceus) obtained from hatcheries in Cheju-Island, Yeosu and Chungnam. Those were treated to eight concentration; 0, 3.4, 6.7, 10.1, 13.4, 20.2, 27.4 and 33.6 ‰. It was not discrepancy in the survival rate and hatching success rate of fertilized embryos obtained from different regions. Also, in the larvae, the regional difference was not appeared. The survival rate and hatching ability of embryos significantly diminished in the lower groups than 13.4 ‰ compared to 33.6 ‰. After fertilization, namely embryos are tolerant of a wide range of salinity (13.4 - 33.6 ‰). Reduced salinity induced an increase of the malformed embryo and larvae including various deformities; irregular embryos membrane (or yolk sac depression), fin erosion and swim bladder inflation in the flounder embryo. The hatching success of embryos was significantly reduced in lower salinity than 13.4 ‰. Notably, the reduction of larval survival rate significantly was observed in ≤10.1 ‰ treated groups with the same manner of survival rates of the embryos. Additionally, olive flounder was found to be adequate model for measuring external impulses because there are no the regional differences.

Effects of abiotic stressors on kelp early life-history stages

  • Lind, Alyssa C.;Konar, Brenda
    • ALGAE
    • /
    • v.32 no.3
    • /
    • pp.223-233
    • /
    • 2017
  • Kelp forests and the many vital ecosystem services they provide are threatened as the severity of climate change and other anthropogenic stressors continues to mount. Particularly in the North Pacific, sea surface temperature is warming and glacial melt is decreasing salinity. This study explored the resiliency of early life-history stages of these foundation species through a factorial laboratory experiment. The effects of rising sea surface temperature under low salinity conditions on kelp spore settlement and initial gametophyte growth in Eualaria fistulosa, Nereocystis luetkeana, and Saccharina latissima were investigated. Decreased settlement and growth were observed in these species at elevated temperatures and at low salinity. Eualaria fistulosa spores and gametophytes were the most negatively impacted, compared to the more widely distributed N. luetkeana and S. latissima. These results suggest that N. luetkeana and S. latissima could potentially outperform E. fistulosa under projected conditions. However, despite decreased performance among all species, our findings indicate that these species are largely resilient to temperature changes when exposed to a low salinity, even when the temperature changes are immediate and extreme. By exploring how early life-history stages of several key kelp species are impacted by dual stressors, this research enhances our understanding of how kelp forests will respond to projected and extreme changes in temperature when already stressed by low salinity.

Effects of Salinity on Survival, Growth and Oxygen Consumption Rates in the Mysid, Neomysis awatschensis (곤쟁이, Neomysis awatschensis의 생존, 성장 및 산소 소비율에 미치는 염분의 영향)

  • 지정훈;황운기;강주찬
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.1
    • /
    • pp.66-71
    • /
    • 2003
  • Effects of salinity on survival, growth and oxygen consumption rates were examined in the mysid, Neomysis awatschensis. Mysids were exposed to various concentrations of salinity (0, 3.4, 6.7, 10.1, 13.4, 20.2, 27.4 and 33.6$\textperthousand$) for 40 days. Survival rate was significantly declined at below 6.7$\textperthousand$ after 40 days. Body length and daily growth rate of mysids exposed at below 6.7$\textperthousand$ salinity were significantly decreased than those of mysids exposed at above 10.1$\textperthousand$ salinity. Oxygen consumpiton rate of mysid exposed at salinity raining of 10.1~39.6$\textperthousand$ during 40 days not greatly changed in comparison with that before salinity treatment, but that of mysid exposed at below 6.7$\textperthousand$ significantly decreased. These results indicated that low salinity concentration ($\leq$6.7$\textperthousand$) reduced survival, growth and oxygen consumption rates of the mysid suggesting potential influence on the natural mortality of Neomysis awatschensis in the estuarine and coastal areas.

Effects of Temperature and Salinity on Development of Sea Peach Halocynthia aurantium (붉은멍게 Halocynthia aurantium 발생에 관한 수온 및 염분의 영향)

  • Lee, Chu;Park, Min-Woo;Lee, Chae-Sung;Kim, Su-Kyoung;Kim, Wan-Ki
    • Journal of Environmental Science International
    • /
    • v.18 no.10
    • /
    • pp.1171-1179
    • /
    • 2009
  • The solitary ascidian, Halocynthia aurantium, which is commonly called the sea peach because of its coloration and general shape, is a valuable organism of benthic marine population in the northern region of the East Sea, Korea. It is seldom found at a depth of less than 10 meters and the sea peach is frequently observed in large populations between 20 and 100 meters. It appears to prefer attachment to vertical rocks faces and artificial cement blocks exposed to the currents. Mass mortality and reduction of resources in sea peach, H. aurantium, were occurred in the benthic area of the northern region of the East Sea because of the rapid fluctuation of environmental factors such as temperature and salinity due to mass rainfall in summer and going up north of a strong warm current in winter. Therefore, we examined the effects of temperature and salinity on embryonic development of fertilized eggs, tadpole larva to metamorphosis, and attachment to siphon development. Laboratory-raised larvae were studied using a two-factorial experimental design with four levels of temperature(8, 12, 16 and $20^{\circ}C$) and four levels of salinity(20, 25, 30 and 34 psu). The ascidian larvae of H. aurantium survived environmental conditions between temperature of $8{\sim}20^{\circ}C$ and salinity of 25~34 psu and exhibited positive growth at $8{\sim}16^{\circ}C$ and 30~34 psu. Fertilized eggs have not developed at lower salinity of 20 psu irrespective of temperature range tested and have showed an abnormal development at the salinity of 25 psu between higher temperatures of 20 and $24^{\circ}C$. This result suggests that temperature increase and salinity reduction depending on environmental fluctuation may have significant impacts on population variation of H. aurantium in the northern region of the East Sea.

Survival of the Ark Shell, Scapharca subcrenata and Physiological and Histological Changes at Decreasing Salinity

  • Shin, Yun-Kyung;Lee, Won-Chan;Jun, Rae-Hong;Kim, Sung-Yeon;Park, Jung-Jun
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.3
    • /
    • pp.209-218
    • /
    • 2009
  • We examined physiological and histological responses related to the survival, oxygen consumption, excretion, and O/N ratio of the ark shell, Scapharca subcrenata, as a result of salinity changes. The 20-day $LS_{50}$ (median lethal salinity) at $15^{\circ}C$ was 13.87 practical salinity units (psu; confidence limits 10.30-18.74 psu), whereas the 14-day $LS_{50}$ at $25^{\circ}C$ was 12.59 psu (confidence limits 8.03-18.16 psu). In conditions of decreasing salinity, the osmolarity of individuals acclimated within 5 h above 26.4 psu but required more than 60 h below 13.2 psu. Oxygen consumption and ammonia excretion rates varied irregularly as salinity decreased. The O/N ratio was 19 and 27 at water temperatures of $15^{\circ}C$ and $25^{\circ}C$, respectively, but decreased to 1-10 as salinity declined. The effects of decreasing salinity were observed in the histological changes to each organ of S. subcrenata. As salinity decreased, cilia fell off, the epithelial layer underwent necrosis and vacuolation, the connective tissue layers of the mantle and visceral mass were destroyed, and hemocytes increased in the gills. The results of this study could prove important in investigating causes of mass mortality and managing shellfish aquaculture farms.

The Optimum Salinity and the Effects of the Rapid Salinity Change on Oxygen Consumption and Nitrogen Excretion in River Puffer, Takifugu obscrus (급격한 염분변화에 따른 황복의 산소소비와 질소배설)

  • Lee Jeong-Yeol;Kim Deock-Bae
    • Journal of Aquaculture
    • /
    • v.18 no.1
    • /
    • pp.45-51
    • /
    • 2005
  • The optimum salinity and the effects of rapid salinity change on oxygen consumption and ammonia nitrogen excretion were examined in River Puffer Takifugu obscrus (total length 9.5$\pm$0.9 cm, total weight 18.7$\pm$5.4 g). Fish examined at the different transfer medium salinity (2, 12, 22 and 32 psu) after 2 months of acclimation period at each salinities. The routine metabolic rates of River puffer are shown as parabola equation, $Y=-0.0873X^2+0.6384X-0.690$ for oxygen consumption and $Y=-2.1667X^2+7.1672X+31.999$ for ammonia nitrogen excretion with the salinity medium at 2, 12. 22 and 32 psu. The oxygen consumption and ammonia nitrogen excretion of River puffer trans-ferred to the low salinity medium (2 and 12 psu) showed significantly difference in each salinities rearing groups than to salinity of 22 and 32 psu. Fish has a diurnal rhythm in relate to feeding, it was showed that the peak of oxygen consumption appeared at 3 hours after feeding and the ammonia nitrogen excretion rate reached maximum 4 hours after feeding. These results may indicate that the optimum salinity for rearing of River puffer is 22 psu based on growth and feed conversion ratio. The rapid change of medium salinity had no effects on the oxygen consumption and nitrogen excretion in River puffer based on this experiment.

A Study on the Effects of Salinity and Washing in on Aerobic Composting of Food Wastes

  • Park, Seok-Hwan
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2004.06a
    • /
    • pp.207-209
    • /
    • 2004
  • This study was performed to estimate the effects of salinity and washing of food wastes on temperature, pH, and salinity in aerobic composting of food wastes. Weight ratios of food wastes to water in washing were 1:0(Control), 1:1(W-1), 1:2(W-2), 1:3(W-3) and 1:4(W-4), respectively. Ratios of food wastes to wood chips in reactor of Control, W-1, W-2, W-3 and W-4 were 5kg:5L, respectively. Reactors were operated for 24 days with 1 hour stirring by 1 rpm and 2 hours aeration per day. The increase in the ratio of food wastes to water used in washing resulted in the decrease of the highest reaction temperature and the elongation of the high temperature reaction period. The lowering of the ratio of food wastes to water used in washing resulted in faster pH increase The final salinities of Control, W-1, W-2, W-3 and W-4 were 0.95%, 0.73%, 0.65%, 0.57% and 0.41%, respectively.

  • PDF