DOI QR코드

DOI QR Code

Survival of the Ark Shell, Scapharca subcrenata and Physiological and Histological Changes at Decreasing Salinity

  • Published : 2009.09.30

Abstract

We examined physiological and histological responses related to the survival, oxygen consumption, excretion, and O/N ratio of the ark shell, Scapharca subcrenata, as a result of salinity changes. The 20-day $LS_{50}$ (median lethal salinity) at $15^{\circ}C$ was 13.87 practical salinity units (psu; confidence limits 10.30-18.74 psu), whereas the 14-day $LS_{50}$ at $25^{\circ}C$ was 12.59 psu (confidence limits 8.03-18.16 psu). In conditions of decreasing salinity, the osmolarity of individuals acclimated within 5 h above 26.4 psu but required more than 60 h below 13.2 psu. Oxygen consumption and ammonia excretion rates varied irregularly as salinity decreased. The O/N ratio was 19 and 27 at water temperatures of $15^{\circ}C$ and $25^{\circ}C$, respectively, but decreased to 1-10 as salinity declined. The effects of decreasing salinity were observed in the histological changes to each organ of S. subcrenata. As salinity decreased, cilia fell off, the epithelial layer underwent necrosis and vacuolation, the connective tissue layers of the mantle and visceral mass were destroyed, and hemocytes increased in the gills. The results of this study could prove important in investigating causes of mass mortality and managing shellfish aquaculture farms.

Keywords

References

  1. Alderdice, D. F. 1972. Factor combinations. Responses of marine poikilotherms to environmental factors acting in concert. In: Marine Ecology, Kinne, O. ed. Prentice-hall INC, 1659-1772
  2. Almada-Villela, P.C. 1984. The effects of reduced salinity on the growth of small Mytilus edulis. J. Mar. Biol. Assoc. UK., 64, 171-182 https://doi.org/10.1017/S0025315400059713
  3. Bakhmet, I.N. and V.V. Khalaman. 2006. Heart rate variation patterns in some representatives of bivalvia. Biol. Bull., 33, 276-280 https://doi.org/10.1134/S1062359006030101
  4. Bayne, B.L. 1973. Aspects of metabolism of Mytilus edulis during starvation. Neth. J. SeaRes., 7, 399-410 https://doi.org/10.1016/0077-7579(73)90061-6
  5. Bayne, B.L. 1985. Responses to environmental stress: tolerance, resistance and adaptation. In: J.S. Gray and M.E. Christiansen, (Editors), Proc. 18th Eur. Mar. Biol. Symp., Olso, Norway, 1983. John Wiley, New York, 331-349
  6. Chen, J.C. and W.C. Chen. 2000. Salinity tolεrance of Haliotis diversicolor superterxa at different salinity and temperature leveIs. Aquaculture, 181, 191-203 https://doi.org/10.1016/S0044-8486(99)00226-4
  7. Cranford, P.J. and J. Grant. 1990. Particle clearance and absorption of phytoplankton and detritus by thε sea scallop Plactopecten mageuanicus (Gmelin). J. Exp. Mar. Biol. Ecol, 137, 105-121 https://doi.org/10.1016/0022-0981(90)90064-J
  8. Dame, R.F. and T.C. Prins. 1998. Bivalve carrying capacity in coastal ecosystems. Aquat. Ecol.,31, 409-421 https://doi.org/10.1023/A:1009997011583
  9. Davenport, J. and T.M. Wong. 1986. Responses of the blood cockle Anadara granosa L.) (Bivalvia: Arcidae) to salinity, hypoxia and aerial exposure. Aquaculture, 56, 151-162 https://doi.org/10.1016/0044-8486(86)90024-4
  10. Drury, R.A.B. and E.A. Wallington. 1980. Carleton's histological technique. Oxford University Press, Oxford, 1-520
  11. FAO. 2006. The state of World Fisheries and Aquaculture (SOFIA). Food and Agriculture Organization of the United Nations, Korea
  12. Feng, S.Y. and W. Van Winkle. 1975. The effect of tempεrature salinity on the heart bεat of Crassostrea virginica. Comp. Biochem. Physiol. Part A, 50, 473-476 https://doi.org/10.1016/0300-9629(75)90303-5
  13. Finny, O.J. 1971. Probit analysis. 3rd ed. Cambridge University Press, London, 1-333
  14. Grant, J. 1999. Ecological constraints on thε sustainability of bivalve aquaculture. ln: Sustainable Aquaculture: Food for the Future? Pro-ceedings of the Second lntemational Symposium on Sustainable Aquaculture, Svennevig, N., H. Reinertsen and M. New eds. Balkema, Rotterdam, 85-95
  15. Hawkins, A.J .S., J.o. Fang, P.L. Pascoe, J.H. Zhang, X.L. Zhang and M.Y. Zhu. 2001. Modelling short-term responsive adjustments in particle clearance rate among bivalve suspension-feεders: sepa-rate umimodal effíects of seston volume and composition in thε scallop Chlamys ffarreri. J. Exp. Mar. Biol. Ecol., 262, 61-73 https://doi.org/10.1016/S0022-0981(01)00282-9
  16. Korea National Statistical Office. 2009. Korean Statistical information service, hompage: http://www.kosis.kr/
  17. Lange, R. 1972. Some recent work on osmotic, ionic and volume regulation in marine animals. Oceanogr. Mar. Biol. Annu. Rev., 10, 97-136
  18. Moon, T. S. 2005. Reproductive cycle, seedling production and aquaculture of blood cockle, Tegillarca granosa (Linnaeus). Ph. D thesis, Pukyung National University. 80-84
  19. Mayzaud, P. 1973. Respiration and nitrogen excrεtion of zooplankton: II. Studies of the metabolic characteristics of starved animals. Mar. Biol., 21, 19-28 https://doi.org/10.1007/BF00351188
  20. Min, D.K. 2004. Mollusks in Korea. Hanguel graphics. Busan, 387
  21. Navarro, J.M. and C.M. Gonzalez. 1998. Physiological responses of the Chilean scallop Argopecten purpuratus to decreasing salinities. Aquaculture, 167, 315-327 https://doi.org/10.1016/S0044-8486(98)00310-X
  22. Newell, R.C. and L.H. Kofoed. 1977. Adjustmεnt of the components of energy balance in the gastropod Crepidula frmcate in response to thermal acclimationacclimation. Mar. Biol., 44, 275-286 https://doi.org/10.1007/BF00387708
  23. NRCA. 1998. Mariculture draft policy and regulation. Nature Resources Conservation Authority, Coastal Zone Management Division. http://www.nrca.org/CZM/ Mariculture/
  24. Otto, R.G. 1973. Temperature tolerance of the mosquito fish, Gambusia affznis (Baird and Girard). J. Fish Biol., 5, 575-585 https://doi.org/10.1111/j.1095-8649.1973.tb04490.x
  25. Pierce, S.K. and M.J. Greenberg. 1972. The nature of cellular volume regulation in marine bivalves. J. Exp. Biol., 57, 681-692
  26. Ponce-Palafox, J., C.A. Martinez-Palacios and L.G. Ross. 1997. The effects of salinity and temperature on the growth and survival rates of juvenile white shrimp, Litopenaeus vannamei, Boone, 1931. Aquaculture, 157, 107-115 https://doi.org/10.1016/S0044-8486(97)00148-8
  27. Sastry, A.N. and S.L. Varge. 1977. Variations in the physiological response of crustacean larvae to temperature. ln: Physiological response of marine biota to pollutants, Vemberg, F.J., A. Calabrese F.P. Thurberg, W.B. Vemberg, eds. Academic press, New York, 410-424
  28. Scholten, H. and A.C. Smaal. 1999. The ecophysiological response of mussels (Mytlus esulis) in mesocosms range of inorganic nutrient loads: simulations with the model EMMY. Aquat. Ecol., 33, 83-100 https://doi.org/10.1023/A:1009995823741
  29. Shin, Y.K., Y. Kim, E.Y. Chung and S.B. Hur. 2000. Temperature and salinity tolerance of the manila clam (Ruditapes philippinarum). J. Kor. Fish. Soc., 33, 213-218
  30. Shin, Y.K., B.H. Kim, B.S. Oh, C.G. Jung, S.G. Sohn and J.S. Lee. 2006. Physiological responses of the ark shε11 Scapharca broughtonii (Bivalvia: Arcidae) to decrease in salinity. J. Fish. Sci. Technol., 9, 153-159
  31. Shin, Y. K. and M.H. Yang. 2005. Effíects of temperature and salinity on the survival and metabolism of Tresus keenae (Mollusca: Bivalvia). J. Fish. Sci. Technol., 8, 161-166
  32. Shin, Y.K. and C.H. Wi. 2004. Effects of temperature and salinity on survival and metabolism of the hard shelled mussel Mytilus coruscus, bivalve: Mytilidae. Aquaculture, 17, 103-108
  33. Shumway, S.E. and R.C. Newell. 1984. Energy resource allocation in Mulinia lateralis (Say), an opportunistic bivalve from shallow water sediments. Ophelia 23, 101-118 https://doi.org/10.1080/00785326.1984.10426607
  34. Shumway, S.E. and R.K. Koεhn. 1982. Oxygen consumption in the American oyster Crassostrea virginca. Mar. Ecol. Pro. Ser., 9, 59-68 https://doi.org/10.3354/meps009059
  35. Smaal, A., M. V. Stralen and E. Schuiling. 2001. The intεraction between shellfish culture and ecosystem processes. Can. J. Fish. Aquat. Sci., 585, 991-1002 https://doi.org/10.1139/cjfas-58-5-991
  36. Solorzano, L. 1969. Determination of ammonia in natural waters by the Phenol-hypochlorite method. Limnol. Oceanogr., 14, 799-801 https://doi.org/10.4319/lo.1969.14.5.0799
  37. Tolley, S.G., A.K. Volety and M. Savarese. 2005. Influence of salinity on the habit use of oyster reefs in three southwest Florida estuaries. J. Shellfish Res., 24, 127-138 https://doi.org/10.2983/0730-8000(2005)24[127:IOSOTH]2.0.CO;2
  38. Widdows, J. 1985. The effects of fluctuating and abrupt changes in salinity on the performance of Myti!usd eulis. In: Marine biology of polar regions and effects of stress on marine organism, Gray, J.S. and M.E. Christiansen, eds. Wiley-Interscience, 55-566
  39. Widdows, J. and D. Johnson. 1988. Physiological energetics of Mytilus edulis: Scope for growth. Mar. Ecol. Prog. Ser., 46, 113-121 https://doi.org/10.3354/meps046113
  40. Wilson, C., L. Scotto, J. Scarpa, A. Volety, S. Laramore and D. Haunert. 2005. Survey of water quality, oyster reproduction and oyster health status in the St. Lucie Estuary. J. Shellfish Res., 24, 157-166 https://doi.org/10.2983/0730-8000

Cited by

  1. Physiological Responses in Abalone Haliotis discus hannai with Different Salinity vol.27, pp.4, 2011, https://doi.org/10.9710/kjm.2011.27.4.283