DOI QR코드

DOI QR Code

Effects of abiotic stressors on kelp early life-history stages

  • Lind, Alyssa C. (College of Fisheries and Ocean Sciences, University of Alaska Fairbanks) ;
  • Konar, Brenda (College of Fisheries and Ocean Sciences, University of Alaska Fairbanks)
  • Received : 2017.03.16
  • Accepted : 2017.08.07
  • Published : 2017.09.30

Abstract

Kelp forests and the many vital ecosystem services they provide are threatened as the severity of climate change and other anthropogenic stressors continues to mount. Particularly in the North Pacific, sea surface temperature is warming and glacial melt is decreasing salinity. This study explored the resiliency of early life-history stages of these foundation species through a factorial laboratory experiment. The effects of rising sea surface temperature under low salinity conditions on kelp spore settlement and initial gametophyte growth in Eualaria fistulosa, Nereocystis luetkeana, and Saccharina latissima were investigated. Decreased settlement and growth were observed in these species at elevated temperatures and at low salinity. Eualaria fistulosa spores and gametophytes were the most negatively impacted, compared to the more widely distributed N. luetkeana and S. latissima. These results suggest that N. luetkeana and S. latissima could potentially outperform E. fistulosa under projected conditions. However, despite decreased performance among all species, our findings indicate that these species are largely resilient to temperature changes when exposed to a low salinity, even when the temperature changes are immediate and extreme. By exploring how early life-history stages of several key kelp species are impacted by dual stressors, this research enhances our understanding of how kelp forests will respond to projected and extreme changes in temperature when already stressed by low salinity.

Keywords

Acknowledgement

Supported by : University of Alaska Fairbanks

References

  1. Amos, C. L., Al-Rashidi, T. B., Rakha, K., El-Gamily, H. & Nicholls, R. J. 2013. Sea surface temperature trends in the coastal ocean. Curr. Dev. Oceanogr. 6:1-13.
  2. Arendt, A., Walsh, J. & Harrison, W. 2009. Changes of glaciers and climate in northwestern North America during the late twentieth century. J. Clim. 22:4117-4134. https://doi.org/10.1175/2009JCLI2784.1
  3. Atkinson, L. P. & Grosch, C. E. 1999. Continental runoff and effects on the North Atlantic Ocean subtropical mode water. Geophys. Res. Lett. 26:2977-2980. https://doi.org/10.1029/1999GL910377
  4. Bieniek, P. A., Walsh, J. E., Thoman, R. L. & Bhatt, U. S. 2014. Using climate divisions to analyze variations and trends in Alaska temperature and precipitation. J. Clim. 27:2800-2818. https://doi.org/10.1175/JCLI-D-13-00342.1
  5. Bologna, P. A. X. & Steneck, R. S. 1993. Kelp beds as habitat for American lobster Homarus americanus. Mar. Ecol. Prog. Ser. 100:127-134. https://doi.org/10.3354/meps100127
  6. Boyer, T. P., Levitus, S., Antonov, J. I., Locarnini, R. A. & Garcia, H. E. 2005. Linear trends in salinity for the World Ocean, 1955-1998. Geophys. Res. Lett. 32:L01604.
  7. Casey, K. S. & Cornillon, P. 2001. Global and regional sea surface temperature trends. J. Clim. 14:3801-3818. https://doi.org/10.1175/1520-0442(2001)014<3801:GARSST>2.0.CO;2
  8. Cie, D. K. & Edwards, M. S. 2008. The effects of high irradiance on the settlement competency and viability of kelp zoospores. J. Phycol. 44:495-500. https://doi.org/10.1111/j.1529-8817.2008.00464.x
  9. Connell, S. D. & Russell, D. R. 2010. The direct effects of increasing $CO_2$ and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proc. R. Soc. B 277:1409-1415. https://doi.org/10.1098/rspb.2009.2069
  10. Dayton, P. K. 1985. Ecology of kelp communities. Annu. Rev. Ecol. Syst. 16:215-245. https://doi.org/10.1146/annurev.es.16.110185.001243
  11. Dean, T. A., Haldorson, L., Laur, D. R., Jewett, S. C. & Blanchard, A. 2000. The distribution of nearshore fishes in kelp and eelgrass communities in Prince William Sound, Alaska: associations with vegetation and physical habitat characteristics. Environ. Biol. Fish. 57:271-287. https://doi.org/10.1023/A:1007652730085
  12. Deiman, M., Iken, K. & Konar, B. 2012. Susceptibility of Nereocystis luetkeana (Laminariales, Ochrophyta) and Eualaria fistulosa (Laminariales, Ochrophyta) spores to sedimentation. Algae 27:115-123. https://doi.org/10.4490/algae.2012.27.2.115
  13. Duggins, D., Eckman, J. E., Siddon, C. E. & Klinger, T. 2001. Interactive roles of mesograzers and current flow in survival of kelps. Mar. Ecol. Prog. Ser. 223:143-155. https://doi.org/10.3354/meps223143
  14. Duggins, D. O., Simenstad, C. A. & Estes, J. A. 1989. Magnification of secondary production by kelp detritus in coastal marine ecosystems. Science 245:170-173. https://doi.org/10.1126/science.245.4914.170
  15. Dyurgerov, M. B. & Meier, M. F. 2005. Glaciers and the changing earth system: a 2004 snapshot. INSTAAR Occasional Paper 58:1-117.
  16. Edwards, M. S. & Konar, B. 2012. A comparison of Dragon Kelp, Eualaria fistulosa, (Phaeophyceae) fecundity in urchin barrens and nearby kelp beds throughout the Aleutian Archipelago. J. Phycol. 48:897-901. https://doi.org/10.1111/j.1529-8817.2012.01139.x
  17. Field, C. & Walker, C. 2003. A site profile of the Kachemak Bay Research Reserve: a unit of the National Estuarine Research Reserve System. Kachemak Bay Research Reserve, Homer, AK, 134 pp.
  18. Fredersdorf, J., Muller, R., Becker, S., Wiencke, C. & Bischof, K. 2009. Interactive effects of radiation, temperature and salinity on different life history stages of the Arctic kelp Alaria esculenta (Phaeophyceae). Oecologia 160:483-492. https://doi.org/10.1007/s00442-009-1326-9
  19. Gaitan-Espitia, J. D., Hancock, J. R., Padilla-Gamino, J. L., Rivest, E. B., Blanchette, C. A., Reed, D. C. & Hofmann, G. E. 2014. Interactive effects of elevated temperature and p$CO_2$ on early-life-history stages of the giant kelp Macrocystis pyrifera. J. Exp. Mar. Biol. Ecol. 457:51-58. https://doi.org/10.1016/j.jembe.2014.03.018
  20. Hamilton, J. & Konar, B. 2007. Implications of substrate complexity and kelp variability for south-central Alaskan nearshore fish communities. Fish. Bull. 105:189-196.
  21. Hinojosa, I. A., Rivadeneira, M. M. & Thiel, M. 2011. Temporal and spatial distribution of floating objects in coastal waters of central-southern Chile and Patagonian fjords. Cont. Shelf Res. 31:172-186. https://doi.org/10.1016/j.csr.2010.04.013
  22. Hoegh-Guldberg, O. & Bruno, J. F. 2010. The impact of climate change on the world's marine ecosystems. Science 328:1523-1528. https://doi.org/10.1126/science.1189930
  23. Irving, A. D., Balata, D., Colosio, F., Ferrando, G. A. & Airoldi, L. 2009. Light, sediment, temperature, and the early lifehistory of the habitat forming alga Cystoseira barbata. Mar. Biol. 156:1223-1231. https://doi.org/10.1007/s00227-009-1164-7
  24. Irving, A. D. & Connell, S. D. 2006. Physical disturbance by kelp abrades erect algae from the understorey. Mar. Ecol. Prog. Ser. 324:127-137. https://doi.org/10.3354/meps324127
  25. Kelly, J. B. 2015. An examination of hydrography and sea level variability in the Gulf of Alaska. M.S. thesis, University of Alaska, Fairbanks, AK, 119 pp.
  26. Kopczak, C. D., Zimmerman, R. C. & Kremer, J. N. 1991. Variation in nitrogen physiology and growth among geographically isolated populations of the giant kelp, Macrocystis pyrifera (Phaeophyta). J. Phycol. 27:149-158. https://doi.org/10.1111/j.0022-3646.1991.00149.x
  27. Krumhansl, K. A., Lauzon-Guay, J. S. & Scheibling, R. E. 2014. Modeling effects of climate change and phase shifts on detrital production of a kelp bed. Ecology 95:763-774. https://doi.org/10.1890/13-0228.1
  28. Lindeberg, M. R. & Lindstrom, S. C. 2010. Field guide to seaweeds of Alaska. Alaska Sea Grant College Program, University of Alaska Fairbanks, Fairbanks, AK, 185 pp.
  29. Ling, S. D., Johnson, C. R., Frusher, S. D. & Ridgway, K. R. 2009. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc. Natl. Acad. Sci. U. S. A. 106:22341-22345. https://doi.org/10.1073/pnas.0907529106
  30. Lorentsen, S. -H., Sjotun, K. & Gremillet, D. 2010. Multitrophic consequences of kelp harvest. Biol. Conserv. 143:2054-2062. https://doi.org/10.1016/j.biocon.2010.05.013
  31. Miller, K. A. & Estes, J. A. 1989. Western range extension for Nereocystis luetkeana in the North Pacific Ocean. Bot. Mar. 32:535-538.
  32. Miller, R. J., Reed, D. C. & Brezezinski, M. A. 2011. Partitioning of primary production among giant kelp (Macrocystis pyrifera), understory macroalgae, and phytoplankton on a temperate reef. Limnol. Oceanogr. 56:119-132. https://doi.org/10.4319/lo.2011.56.1.0119
  33. Moy, F. E. & Christie, H. 2012. Large-scale shift from sugar kelp (Saccharina latissima) to ephemeral algae along the south and west coast of Norway. Mar. Biol. Res. 8:309-321. https://doi.org/10.1080/17451000.2011.637561
  34. Neal, E. G., Hood, E. & Smikrud, K. 2010. Contribution of glacier runoff to freshwater discharge into the Gulf of Alaska. Geophys. Res. Lett. 37:L06404.
  35. NOAA National Estuarine Research Reserve System. 2002-2014. System-wide Monitoring Program. Available from: http://www.nerrsdata.org. Accessed May 23, 2014.
  36. Reed, D. C. 1990. The effects of variable settlement and early competition on patterns of kelp recruitment. Ecology 71:776-787. https://doi.org/10.2307/1940329
  37. Royer, T. C. 1982. Coastal fresh water discharge in the Northeast Pacific. J. Geophys. Res. 87:2017-2021. https://doi.org/10.1029/JC087iC03p02017
  38. Royer, T. C. & Grosch, C. E. 2006. Ocean warming and fresh-ening in the northern Gulf of Alaska. Geophys. Res. Lett. 33:L16605. https://doi.org/10.1029/2006GL026767
  39. Russell, B. D. 2007. Effects of canopy-mediated abrasion and water flow on the early colonisation of turf-forming algae. Mar. Freshw. Res. 58:657-665. https://doi.org/10.1071/MF06194
  40. Schiel, D. R. & Foster, M. S. 2006. The population biology of large brown seaweeds: ecological consequences of multiphase life histories in dynamic coastal environments. Annu. Rev. Ecol. Evol. Syst. 37:343-372. https://doi.org/10.1146/annurev.ecolsys.37.091305.110251
  41. Schiel, D. R., Steinbeck, J. R. & Foster, M. S. 2004. Ten years of induced ocean warming causes comprehensive changes in marine benthic communities. Ecology 85:1833-1839. https://doi.org/10.1890/03-3107
  42. Seitz, R. D., Wennhage, H., Bergstrom, U., Lipcius, R. N. & Ysebaert, T. 2014. Ecological value of coastal habitats for commercially and ecologically important species. ICES J. Mar. Sci. 71:648-665. https://doi.org/10.1093/icesjms/fst152
  43. Smith, C. M. & Berry, J. A. 1986. Recovery of photosynthesis after exposure of intertidal algae to osmotic and temperature stresses: comparative studies of species with differing distributional limits. Oecologia 70:6-12. https://doi.org/10.1007/BF00377105
  44. Spurkland, T. & Iken, K. 2011. Kelp bed dynamics in estuarine environments in subarctic Alaska. J. Coast. Res. 27:133-143.
  45. Thornton, T. F. & Herbert, J. 2014. Neoliberal and neo-communal herring fisheries in Southeast Alaska: reframing sustainability in marine ecosystems. Mar. Policy 61:366-375.
  46. Wernberg, T., Thomsen, M. S., Tuya, F., Kendrick, G. A., Staehr, P. A. & Toohey, B. D. 2010. Decreasing resilience of kelp beds along latitudinal temperature gradient: potential implications for a warmer future. Ecol. Lett. 13:685-694. https://doi.org/10.1111/j.1461-0248.2010.01466.x
  47. Wiencke, C., Clayton, M. N., Gomez, I., Iken, K., Luder, U. H., Amsler, C. D., Karsten, U., Hanelt, D., Bischof, K. & Dunton, K. 2007. Life history, ecophysiology and ecology of seaweeds in polar waters. Re. Environ. Sci. Biotechnol. 6:95-126. https://doi.org/10.1007/s11157-006-9106-z

Cited by

  1. (phylum Ochrophyta) vol.55, pp.1, 2018, https://doi.org/10.1111/jpy.12814
  2. Diverse responses of sporophytic photochemical efficiency and gametophytic growth for two edible kelps, Saccharina japonica and Undaria pinnatifida, to ocean acidification and warming vol.142, pp.None, 2019, https://doi.org/10.1016/j.marpolbul.2019.03.063
  3. The seaweed resources of Alaska vol.62, pp.3, 2017, https://doi.org/10.1515/bot-2018-0064
  4. Thermal and light impacts on the early growth stages of the kelp Saccharina angustissima (Laminariales, Phaeophyceae) vol.34, pp.2, 2017, https://doi.org/10.4490/algae.2019.34.5.12
  5. Comparing the impacts of four ENSO events on giant kelp (Macrocystis pyrifera) in the northeast Pacific Ocean vol.34, pp.2, 2017, https://doi.org/10.4490/algae.2019.34.5.4
  6. Are we ready for scaling up restoration actions? An insight from Mediterranean macroalgal canopies vol.14, pp.10, 2017, https://doi.org/10.1371/journal.pone.0224477
  7. Effects of elevated temperature and sedimentation on grazing rates of the green sea urchin: implications for kelp forests exposed to increased sedimentation with climate change vol.73, pp.1, 2017, https://doi.org/10.1186/s10152-019-0526-x
  8. Elevated Temperature Affects Phenotypic Plasticity in the Bull Kelp (Nereocystis luetkeana, Phaeophyceae) vol.56, pp.6, 2017, https://doi.org/10.1111/jpy.13049
  9. Slow Community Development Enhances Abiotic Limitation of Benthic Community Structure in a High Arctic Kelp Bed vol.8, pp.None, 2021, https://doi.org/10.3389/fmars.2021.592295
  10. The ghost of a giant – Six hypotheses for how an extinct megaherbivore structured kelp forests across the North Pacific Rim vol.30, pp.10, 2017, https://doi.org/10.1111/geb.13370
  11. Kelp in the Eastern Canadian Arctic: Current and Future Predictions of Habitat Suitability and Cover vol.18, pp.None, 2017, https://doi.org/10.3389/fmars.2021.742209