Browse > Article
http://dx.doi.org/10.5657/fas.2009.12.3.209

Survival of the Ark Shell, Scapharca subcrenata and Physiological and Histological Changes at Decreasing Salinity  

Shin, Yun-Kyung (Aquaculture & Resource Enhancement Division, NFRDI)
Lee, Won-Chan (Environment Research Division, NFRDI)
Jun, Rae-Hong (Environment Research Division, NFRDI)
Kim, Sung-Yeon (Aquaculture Environment Institute, NFRDI)
Park, Jung-Jun (Environment Research Division, NFRDI)
Publication Information
Fisheries and Aquatic Sciences / v.12, no.3, 2009 , pp. 209-218 More about this Journal
Abstract
We examined physiological and histological responses related to the survival, oxygen consumption, excretion, and O/N ratio of the ark shell, Scapharca subcrenata, as a result of salinity changes. The 20-day $LS_{50}$ (median lethal salinity) at $15^{\circ}C$ was 13.87 practical salinity units (psu; confidence limits 10.30-18.74 psu), whereas the 14-day $LS_{50}$ at $25^{\circ}C$ was 12.59 psu (confidence limits 8.03-18.16 psu). In conditions of decreasing salinity, the osmolarity of individuals acclimated within 5 h above 26.4 psu but required more than 60 h below 13.2 psu. Oxygen consumption and ammonia excretion rates varied irregularly as salinity decreased. The O/N ratio was 19 and 27 at water temperatures of $15^{\circ}C$ and $25^{\circ}C$, respectively, but decreased to 1-10 as salinity declined. The effects of decreasing salinity were observed in the histological changes to each organ of S. subcrenata. As salinity decreased, cilia fell off, the epithelial layer underwent necrosis and vacuolation, the connective tissue layers of the mantle and visceral mass were destroyed, and hemocytes increased in the gills. The results of this study could prove important in investigating causes of mass mortality and managing shellfish aquaculture farms.
Keywords
Scapharca subcrenata; Salinity; Survival; Physiological change;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lange, R. 1972. Some recent work on osmotic, ionic and volume regulation in marine animals. Oceanogr. Mar. Biol. Annu. Rev., 10, 97-136
2 Min, D.K. 2004. Mollusks in Korea. Hanguel graphics. Busan, 387
3 NRCA. 1998. Mariculture draft policy and regulation. Nature Resources Conservation Authority, Coastal Zone Management Division. http://www.nrca.org/CZM/ Mariculture/
4 Pierce, S.K. and M.J. Greenberg. 1972. The nature of cellular volume regulation in marine bivalves. J. Exp. Biol., 57, 681-692
5 Shin, Y. K. and M.H. Yang. 2005. Effíects of temperature and salinity on the survival and metabolism of Tresus keenae (Mollusca: Bivalvia). J. Fish. Sci. Technol., 8, 161-166
6 Shumway, S.E. and R.K. Koεhn. 1982. Oxygen consumption in the American oyster Crassostrea virginca. Mar. Ecol. Pro. Ser., 9, 59-68   DOI
7 Widdows, J. 1985. The effects of fluctuating and abrupt changes in salinity on the performance of Myti!usd eulis. In: Marine biology of polar regions and effects of stress on marine organism, Gray, J.S. and M.E. Christiansen, eds. Wiley-Interscience, 55-566
8 Widdows, J. and D. Johnson. 1988. Physiological energetics of Mytilus edulis: Scope for growth. Mar. Ecol. Prog. Ser., 46, 113-121   DOI
9 Shin, Y.K., Y. Kim, E.Y. Chung and S.B. Hur. 2000. Temperature and salinity tolerance of the manila clam (Ruditapes philippinarum). J. Kor. Fish. Soc., 33, 213-218
10 Hawkins, A.J .S., J.o. Fang, P.L. Pascoe, J.H. Zhang, X.L. Zhang and M.Y. Zhu. 2001. Modelling short-term responsive adjustments in particle clearance rate among bivalve suspension-feεders: sepa-rate umimodal effíects of seston volume and composition in thε scallop Chlamys ffarreri. J. Exp. Mar. Biol. Ecol., 262, 61-73   DOI   ScienceOn
11 Navarro, J.M. and C.M. Gonzalez. 1998. Physiological responses of the Chilean scallop Argopecten purpuratus to decreasing salinities. Aquaculture, 167, 315-327   DOI   ScienceOn
12 Wilson, C., L. Scotto, J. Scarpa, A. Volety, S. Laramore and D. Haunert. 2005. Survey of water quality, oyster reproduction and oyster health status in the St. Lucie Estuary. J. Shellfish Res., 24, 157-166   DOI
13 Alderdice, D. F. 1972. Factor combinations. Responses of marine poikilotherms to environmental factors acting in concert. In: Marine Ecology, Kinne, O. ed. Prentice-hall INC, 1659-1772
14 Bakhmet, I.N. and V.V. Khalaman. 2006. Heart rate variation patterns in some representatives of bivalvia. Biol. Bull., 33, 276-280   DOI   ScienceOn
15 Dame, R.F. and T.C. Prins. 1998. Bivalve carrying capacity in coastal ecosystems. Aquat. Ecol.,31, 409-421   DOI   ScienceOn
16 Otto, R.G. 1973. Temperature tolerance of the mosquito fish, Gambusia affznis (Baird and Girard). J. Fish Biol., 5, 575-585   DOI
17 Sastry, A.N. and S.L. Varge. 1977. Variations in the physiological response of crustacean larvae to temperature. ln: Physiological response of marine biota to pollutants, Vemberg, F.J., A. Calabrese F.P. Thurberg, W.B. Vemberg, eds. Academic press, New York, 410-424
18 FAO. 2006. The state of World Fisheries and Aquaculture (SOFIA). Food and Agriculture Organization of the United Nations, Korea
19 Shumway, S.E. and R.C. Newell. 1984. Energy resource allocation in Mulinia lateralis (Say), an opportunistic bivalve from shallow water sediments. Ophelia 23, 101-118   DOI
20 Grant, J. 1999. Ecological constraints on thε sustainability of bivalve aquaculture. ln: Sustainable Aquaculture: Food for the Future? Pro-ceedings of the Second lntemational Symposium on Sustainable Aquaculture, Svennevig, N., H. Reinertsen and M. New eds. Balkema, Rotterdam, 85-95
21 Ponce-Palafox, J., C.A. Martinez-Palacios and L.G. Ross. 1997. The effects of salinity and temperature on the growth and survival rates of juvenile white shrimp, Litopenaeus vannamei, Boone, 1931. Aquaculture, 157, 107-115   DOI   ScienceOn
22 Shin, Y.K. and C.H. Wi. 2004. Effects of temperature and salinity on survival and metabolism of the hard shelled mussel Mytilus coruscus, bivalve: Mytilidae. Aquaculture, 17, 103-108
23 Smaal, A., M. V. Stralen and E. Schuiling. 2001. The intεraction between shellfish culture and ecosystem processes. Can. J. Fish. Aquat. Sci., 585, 991-1002   DOI
24 Chen, J.C. and W.C. Chen. 2000. Salinity tolεrance of Haliotis diversicolor superterxa at different salinity and temperature leveIs. Aquaculture, 181, 191-203   DOI   ScienceOn
25 Cranford, P.J. and J. Grant. 1990. Particle clearance and absorption of phytoplankton and detritus by thε sea scallop Plactopecten mageuanicus (Gmelin). J. Exp. Mar. Biol. Ecol, 137, 105-121   DOI   ScienceOn
26 Newell, R.C. and L.H. Kofoed. 1977. Adjustmεnt of the components of energy balance in the gastropod Crepidula frmcate in response to thermal acclimationacclimation. Mar. Biol., 44, 275-286   DOI
27 Scholten, H. and A.C. Smaal. 1999. The ecophysiological response of mussels (Mytlus esulis) in mesocosms range of inorganic nutrient loads: simulations with the model EMMY. Aquat. Ecol., 33, 83-100   DOI   ScienceOn
28 Bayne, B.L. 1973. Aspects of metabolism of Mytilus edulis during starvation. Neth. J. SeaRes., 7, 399-410   DOI   ScienceOn
29 Shin, Y.K., B.H. Kim, B.S. Oh, C.G. Jung, S.G. Sohn and J.S. Lee. 2006. Physiological responses of the ark shε11 Scapharca broughtonii (Bivalvia: Arcidae) to decrease in salinity. J. Fish. Sci. Technol., 9, 153-159
30 Drury, R.A.B. and E.A. Wallington. 1980. Carleton's histological technique. Oxford University Press, Oxford, 1-520
31 Davenport, J. and T.M. Wong. 1986. Responses of the blood cockle Anadara granosa L.) (Bivalvia: Arcidae) to salinity, hypoxia and aerial exposure. Aquaculture, 56, 151-162   DOI   ScienceOn
32 Bayne, B.L. 1985. Responses to environmental stress: tolerance, resistance and adaptation. In: J.S. Gray and M.E. Christiansen, (Editors), Proc. 18th Eur. Mar. Biol. Symp., Olso, Norway, 1983. John Wiley, New York, 331-349
33 Tolley, S.G., A.K. Volety and M. Savarese. 2005. Influence of salinity on the habit use of oyster reefs in three southwest Florida estuaries. J. Shellfish Res., 24, 127-138   DOI
34 Finny, O.J. 1971. Probit analysis. 3rd ed. Cambridge University Press, London, 1-333
35 Korea National Statistical Office. 2009. Korean Statistical information service, hompage: http://www.kosis.kr/
36 Almada-Villela, P.C. 1984. The effects of reduced salinity on the growth of small Mytilus edulis. J. Mar. Biol. Assoc. UK., 64, 171-182   DOI
37 Solorzano, L. 1969. Determination of ammonia in natural waters by the Phenol-hypochlorite method. Limnol. Oceanogr., 14, 799-801   DOI   ScienceOn
38 Feng, S.Y. and W. Van Winkle. 1975. The effect of tempεrature salinity on the heart bεat of Crassostrea virginica. Comp. Biochem. Physiol. Part A, 50, 473-476   DOI   ScienceOn
39 Moon, T. S. 2005. Reproductive cycle, seedling production and aquaculture of blood cockle, Tegillarca granosa (Linnaeus). Ph. D thesis, Pukyung National University. 80-84
40 Mayzaud, P. 1973. Respiration and nitrogen excrεtion of zooplankton: II. Studies of the metabolic characteristics of starved animals. Mar. Biol., 21, 19-28   DOI