• 제목/요약/키워드: sags

검색결과 120건 처리시간 0.035초

4종류 토양개량재가 USGA 모래에 파종한 크리핑 벤트그래스의 유묘 활착률 및 밀도 변화에 미치는 영향 (Effect of Four Soil Amendments on Turfgrass Establishment and Density in Creeping Bentgrass Grown in Sand-based Root Zone)

  • 김경남
    • Weed & Turfgrass Science
    • /
    • 제7권2호
    • /
    • pp.148-157
    • /
    • 2018
  • 본 연구는 외국산 피트를 포함해서 국내외 토양개량재 4종류가 크리핑 벤트그래스의 초기 활착 및 잔디밀도에 미치는 영향을 조사함으로 잔디밭 조성 시 실무에 활용할 수 있는 기초자료를 얻기 위해 수행하였다. 전체 20개 처리구는 식재층 모래에 유기질 토양개량재인 SABP (Berger peat), SAEP (Eco-peat), SAGS (G1-Soil) 및 SAPP (Premier peat)를 10-50% (v/v) 사이 혼합하여 준비하였다. 크리핑 벤트그래스의 초기 활착 및 밀도 변화는 토양개량재 종류에 따라 유의한 차이가 나타났다. 잔디밀도는 경시적인 변화가 나타나서 파종 2주 후 생육 초기 최저 36.7% (SABP 30)에서 최고 89.7% (SAGS 20)까지 처리구간 차이가 53% 정도 나타났다. 하지만 파종 6주 전후로 성숙기 밀도 수준에 도달해서 SABP 및 SAEP 일부 혼합구를 제외한 대부분 처리구에서 잔디밀도는 90% 전후로 비슷하였다. 실험 종료 시 최종 활착율은 최저 60.7% (SAEP 10)에서 최고 96.7% (SAPP 50)까지 처리구간 차이가 36.0%나 크게 나타났다. 잔디 활착율 및 밀도에 대한 최적 혼합율은 개량재 종류에 따라서 일정하지 않았다. SABP와 SAGS 개량재의 최적 혼합비율은 각각 10% 및 20%로 나타났지만, SAEP와 SAPP 개량재는 50%가 최적의 비율로 나타났다. 따라서 잔디밭 조성 전에 과학적인 분석을 통해 개별 토양개량재의 적정 혼합비율을 결정해서 실무에 적용하는 것이 필요하며, 또한 향후 주요 잔디 초종에서 외국산 및 국내산 토양개량재가 잔디생육에 미치는 종합적인 포장 적응성 실험을 통해 실무 응용에 활용하는 것이 바람직하다.

배전선로 전압강하에 대한 이중 여자 풍력발전시스템 특성 해석 (Analysis of doubly-fed induction generator based wind power system for voltage sag)

  • 차한주;이상회
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1234-1235
    • /
    • 2007
  • This paper represents the generating principles of the doubly-fed induction generator (DFIG) based wind power system and developes a simulation model of DFIG by using PSCAD/EMTDC. In addition, this paper analyzes the steady state operation and the transient operation during the voltage sags in the power common coupling. The voltage sags are occurred by three phase line-to-ground faults and full-voltage startup of an induction motor in the simulation.

  • PDF

Implementation of a Non-Linear Adaptive Filter Based Sag Detection Method for Dynamic Voltage Restorers under Unbalanced Fault Conditions

  • Cuma, M. Ugras;Teke, Ahmet;Meral, M. Emin;Bayindir, K. Cagatay;Tumay, Mehmet
    • Journal of Power Electronics
    • /
    • 제13권2호
    • /
    • pp.304-312
    • /
    • 2013
  • The most common power quality problems in distribution systems are related to unbalanced voltage sags. Voltage sags must be detected quickly and corrected in a minimum amount of time. One of the most widely used methods for sag detection is based on the d-q transformation. This method has the disadvantage of missing the detection of unbalanced faults, because this method uses a voltage sag level signal obtained from the average of 3 phases for sag detection. In this paper, an adaptive filter sag detection method is proposed for Dynamic Voltage Restorers (DVR) under unbalanced fault conditions. The proposed DVR controller is able to detect balanced, unbalanced and single phase voltage sags. A novel reference voltage generation method is also presented. To validate the proposed control methods, a 3-phase DSP controlling a DVR prototype with a power rating of 1.5-kVA has been developed. Finally, experimental results are presented to verify the performance of the proposed control methods.

Novel Fast Peak Detector for Single- or Three-phase Unsymmetrical Voltage Sags

  • Lee, Sang-Hoey;Cha, Han-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권5호
    • /
    • pp.658-665
    • /
    • 2011
  • In the present paper, a novel fast peak detector for single- or three-phase unsymmetrical voltage sags is proposed. The proposed detector is modified from a single-phase digital phase-locked loop based on a d-q transformation using an all-pass filter (APF). APF generates a virtual phase with $90^{\circ}$ phase delay. However, this virtual phase cannot reflect a sudden change of the grid voltage in the moment of voltage sag, which causes a peak value to be significantly distorted and to settle down slowly. Specifically, the settling time of the peak value is too long when voltage sag occurs around a zero crossing, such as phase $0^{\circ}$ and $180^{\circ}$. This paper describes the operating principle of the APF problem and proposes a modified all-pass filter (MAPF) to mitigate the inherent APF problem. In addition, a new fast peak detector using MAPF is proposed. The proposed detector is able to calculate a peak value within 0.5 ms, even when voltage sag occurs around zero crossing. The proposed fast peak detector is compared with the conventional detector using APF. Results show that the proposed detector has faster detection time in the whole phase range. Furthermore, the proposed fast peak detector can be effectively applied to unsymmetrical three-phase voltage sags. Simulation and experimental results verify the advantages of the proposed detector and MAPF.

DVR시스템에 사용되는 인버터부의 LC필터 설계와 피드백 성능분석 (Design and Feedback Performance Analysis of the Inverter-side LC Filters Used in the DVR System)

  • 박종찬;손진근
    • 전기학회논문지P
    • /
    • 제64권2호
    • /
    • pp.79-84
    • /
    • 2015
  • Voltage sags are considered the dominant disturbances affecting power quality. Dynamic voltage restorers(DVRs) are mainly used to protect sensitive loads from the electrical network voltage disturbances such as sags or swells and could be used to reduce harmonic distortion of ac voltages. The typical DVR topology essentially contains a PWM inverter with LC Filter, an injection transformer connected between the ac voltage line and the sensitive load, and a DC energy storage device. For injecting series voltage, the PWM inverter is used and the passive filter consist of inductor(L) and capacitor(C) for harmonics elimination of the inverter. However there are voltage pulsation responses by the characteristic of the LC passive filter that eliminate the harmonics of the PWM output waveform of the inverter. Therefore, this paper presented design and feedback performance of LC filter used in the DVRs. The voltage control by LC filter should be connected in the line side since this feedback method allows a relatively faster dynamic response, enabling the elimination of voltage notches or spikes in the beginning and in the end of sags and strong load voltage THD reduction. Illustrative examples are also included.

A Novel Detection Technique for Voltage Sag in Distribution Lines Using the Wavelet Transform

  • Ko, Young-Hun;Kim, Chul-Hwan;Ahn, Sang-Pil
    • KIEE International Transactions on Power Engineering
    • /
    • 제3A권3호
    • /
    • pp.130-138
    • /
    • 2003
  • This paper presents a discrete wavelet transform approach for determining the beginning and end times of voltage sags. Firstly, investigations in the use of some typical mother wavelets, namely Daubechies, Symlets, Coiflets and Biorthogonal are carried out and the most appropriate mother wavelet is selected. The proposed technique is based on utilizing the maximum value of Dl (at scale 1) coefficients in multiresolution analysis (MRA) based on the discrete wavelet transform. The results are compared with other methods for determining voltage sag duration, such as the Root Mean Square (RMS) voltage and Short Time Fourier Transform (STFT) methods. It is shown that the voltage sag detection technique based on the wavelet transform is a satisfactory and reliable method for detecting voltage sags in power quality disturbance analysis.

dq 정지, 동페 좌표계를 이용한 순간전압강하 보상 (Voltage Sag Compensation using dq Stationary and Synchronous Rotating Frame)

  • 이교성;이용제;박정균;최현영;김양모
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.973-975
    • /
    • 2002
  • Voltage Sags are the short-duration reductions in rms voltage caused by faults in the electric supply system and the starting of large loads, such as motors. In this paper, we use the dq transformation(dq stationary frame and dq synchronous rotating frame) for series voltage sag compensation algorithm. Analysis, simulation results are presented for voltage sags on a three-phase balanced voltage source.

  • PDF

대규모 계통에서의 순간전압강하 지속시간을 고려한 추계적 평가 방법 (Stochastic Method to Assess Voltage Sag Performance Considering Sag Duration in Large Power System)

  • 이명철;박창현
    • 조명전기설비학회논문지
    • /
    • 제30권2호
    • /
    • pp.85-92
    • /
    • 2016
  • The paper presents a method to assess system voltage sag performance considering sag durations as well as magnitudes. In general, voltage sag assessment for large power systems is performed only considering sag magnitudes at sensitive load points. However some equipment can be affected by certain sag durations. The duration of the voltage sag is depend on the time of fault current flow in the system. Therefore, the duration can be determined by analyzing the operating characteristic of the protection system. In this paper, an effective method to evaluate sag durations regarding the characteristics and failure rates of the protection system is described. The proposed method can be used to assess the long-term performance of the voltage sags in large power system.

친환경 Ultra-capacitor에 의한 순시전압강하의 직렬전압보상 시스템 (Series Voltage Compensation Systems for Voltage Sag by Using an Environmentally Friendly Ultra-capacitor)

  • 손진근;전희종
    • 전기학회논문지
    • /
    • 제58권4호
    • /
    • pp.763-769
    • /
    • 2009
  • A series voltage compensation(SVC) system is a power-electronics controller that can protect sensitive loads from disturbance in the supply system. Especially, voltage sags are considered the dominant disturbances affecting the power quality. This paper dealt with a system of off-line type voltage sag compensation by using a bi-directional DC/DC converter of environmentally friendly ultra-capacitor. This capacitor is attached to the DC link of SVC through the high-efficiency DC/DC converter in order to compensate the DC link voltage drop during short-term power interruption as voltage sags. Therefore, in this paper, a DC/DC converter to control high-efficiency energy of ultra-capacitor and voltage sag detection algorithm of off-line type SVC systems are newly introduced. According to the results of experimental of prototype system, it is verified that the proposed system has effectiveness of voltage sag compensation using an ultra-capacitor.

순간전압강하 모니터링 데이터 분석 방법 (Development of a Method to Analyze Voltage Sag Monitoring Data)

  • 박창현
    • 조명전기설비학회논문지
    • /
    • 제27권4호
    • /
    • pp.16-22
    • /
    • 2013
  • This paper presents a method to analyze the voltage sag data obtained from monitoring systems. In order to establish effective countermeasures against voltage sag problems, an assessment of the system performance with respect to voltage sags is needed. Generally, the average annual sag frequency can be estimated by using the recorded voltage sag events for several years. However, the simple average value can not give the information about the errors of estimation. Such an average estimation is not useful for establishing effective solutions for voltage sag problems. Therefore, this paper proposes an effective method based on the Interval Estimation method. The estimation of voltage sag frequency is performed by using the average frequency and Poisson probability model. The proposed method can give the expected annual sag frequency and upper one-sided bound frequency.