• Title/Summary/Keyword: safety test

Search Result 7,976, Processing Time 0.035 seconds

On an Efficient Development of the Test & Evaluation Plan through the insured Traceability of the Safety Requirements (안전 요구사항의 추적성 구현을 통한 시험/평가 계획서의 효율적 개발)

  • Yoon, Jae-Han;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.6
    • /
    • pp.89-96
    • /
    • 2007
  • It is well known that the test and evaluation plan (TEP) is very crucial in the successful development of safety-critical systems. As such, this paper discusses an approach to the development of the TEP for a system that should meet safety requirements in the systems development process. It is studied how to incorporate the result of preliminary hazard analysis (PHA) in generating the safety requirements. It is also discussed how to deal with them when the system requirements (i.e., functions, performance, constraints, components, etc) and the safety requirements are integrated into one model. While doing so, we have constructed the required traceability among them, which is necessary and very useful when the safety requirements need to be corrected or be changed. The use of the traceability makes it possible to easily check out whether and how the safety requirements are properly incorporated in the system design process. Furthermore, without the verified traceability, the system cannot be changed or upgraded later. In order to implement the model on a computer-aided tool, we have constructed a database (DB) schema. As a result, the implemented model/DB allows to automatically generate TEP which can be used to measure the performance and safety level of the developed system.

Effect of Proof Test of Protective System on Securing Safety of Off-site Risk Assessment (보호시스템 보증시험 적용이 장외영향평가 안전성 확보에 미치는 영향)

  • Kim, Min-Su;Kim, Jae-Young;Lee, Eun-Byeol;Yoon, Junheon;Park, Jai Hak
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.46-53
    • /
    • 2017
  • The risk is expressed as consequence of damage multiplied by likelihood of failure. The installation of a protective system reduces the risk by reducing the likelihood of failure at the facility. Also, the protective system has different effects on the likelihood of failure according to the proof test cycle. However, when assessing risks in the Off-site Risk Assessment (ORA) system, the variation in risk was not reflected according to the proof test cycle of protective system. This study was conducted to examine the need for proof test and the importance of cycle setting by applying periodic proof test of the protective system to ORA. The results showed that the likelihood of failure and the risk increased with longer proof test cycle. The risk of a two-yearly proof test was eight times greater than that of a three-month cycle. From the results, the protective system needs periodic proof test. Untested protective system for a long term cannot be reliable because it is more likely to be failed state when it is called upon to operate. In order to reduce the risk to an acceptable level, it is effective to differently set the proof test cycle according to the priority. This study suggested a more systematic and accurate risk analysis standard than ORA. This standard is expected to enable an acceptable level of risk management by systematically setting the priority and proof test cycle of the protective system. It is also expected to contribute to securing the safety of chemical facilities and at the same time, will lead to the development of the ORA system.

On the Improvement of the Test and Evaluation Process in the Weapon Systems Development with Systems Safety Incorporated (무기체계 개발에서 시스템 안전성을 고려한 시험평가 프로세스의 개선에 관한 연구)

  • Sim, Sang Hyun;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.3
    • /
    • pp.51-60
    • /
    • 2013
  • With the recent changes in the environment of weapon systems acquisition, the systems development is becoming more susceptible to a variety of risks. To cope with this situation, US DoD has been emphasizing the importance of constantly applying the test and evaluation (T&E) process throughout the whole life cycle of the weapon systems. In particular, the safety requirements are called for attention while dealing with system risks. To this end, the present paper is aimed at studying the T&E process which incorporates the systems safety in weapon systems development. Analyzing and modeling the relevant processes has made it possible to achieve the objective. As a case study, the model results were applied to the development of unmanned aerial vehicles.

A Study on Improving the Constructing System of Railway Safety Test Facilities (철도안전성능시험설비 구축 체계 개선에 관한 연구)

  • Kim, Yun-Mi;Choi, Kyoung-Jin;Cho, Youn-Ok
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.2034-2039
    • /
    • 2010
  • As a mass transportation system, a railway contains potential risks that may result in a high death rate and property losses. Accordingly, Railroad Safety Technology R&D Corps. is adopting the plan of the construction of Railway Safety Test Facilities as a part of the Railway Total Safety Project to enhance the railway safety, and carrying out researches on effective project management methods with Systems Engineering techniques. When a system or a service is realized, such as the Railway Total Safety Project, it needs to be verified by requirements and the process of verification is to check whether customers/stakeholders requirements have been properly transformed into a system or a service. Recently, building the standardized verification system up could be the solution to reduce possible system-failed risks. To support that, we propose the more effectual verification method of constructing the Railway Safety Test Facilities applying the systems engineering tool to the research.

  • PDF

A Study on Evaluation Method of the HDA Test in Domestic Road Environment (국내도로 환경에서의 HDA 시험평가 방법에 관한 연구)

  • Bae, Geon Hwan;Kim, Bong Ju;Lee, Seon Bong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.4
    • /
    • pp.39-49
    • /
    • 2019
  • Autonomous vehicle is a car which drives itself without any human interaction. SAE provides technical definitions for autonomous and international standards for test evaluation. Accordingly, automobile industry is actively researching development and evaluation of various ADAS (Advanced Driver Assistance Systems), : representative technology of autonomous technology. Recently, ADAS is in the commercialization level such as ACC, LKAS, AEB, and HDA etc. And it also has issues about safety evaluation. The purpose of HDA in ADAS is reduced the driving load on highway. It has a function which can maintain lane keeping and control distance from forward vehicle. This function is evaluated to be useful for accident prevention. Therefore, this paper proposes the safety evaluation scenario of HDA, considering the domestic highway design criteria and the situation that may arise on the actual highway. We compared and analyzed the data acquired through simulation and actual vehicle test. And verified the reliability of the proposed safety evaluation scenario. The verified result is expected safety evaluation of HDA is possible even under the bad condition, which cannot be tested.

Effects of alloys and flow velocity on welded pipeline wall thinning in simulated secondary environment for nuclear power plants (원전 2차계통수 모사 환경에서 용접배관 감육 특성에 미치는 재료 및 유속의 영향)

  • Kim, Kyung Mo;Choeng, Yong-Moo;Lee, Eun Hee;Lee, Jong Yeon;Oh, Se-Beom;Kim, Dong-Jin
    • Corrosion Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.245-252
    • /
    • 2016
  • The pipelines and equipments are degraded by flow-accelerated corrosion (FAC), and a large-scale test facility was constructed for simulate the FAC phenomena in secondary coolant environment of PWR type nuclear power plants. Using this facility, FAC test was performed on weld pipe (carbon steel and low alloy steel) at the conditions of high velocity flow (> 10 m/s). Wall thickness was measured by high temperature ultrasonic monitoring systems (four-channel buffer rod type and waveguide type) during test period and room temperature manual ultrasonic method before and after test period. This work deals with the complex effects of flow velocity on the wall thinning in weld pipe and the test results showed that the higher flow velocity induced different increasement of wall thinning rate for the carbon steel and low alloy steel pipe.

A Study on the Reliability Assesment of Solar Photovoltaic and Thermal Collector System (태양광열 시스템의 신뢰성 평가에 관한 연구)

  • Park, Tae-Kook;Bae, Seung-Hoon;Kim, Sang-Kyo;Kim, Seon-Min;Kim, Dae-Hwan;Eom, Hak-Yong;Lee, Keun-Hui
    • New & Renewable Energy
    • /
    • v.16 no.4
    • /
    • pp.49-64
    • /
    • 2020
  • Photovoltaic and Thermal collector (PV/T) systems are renewable energy devices that can produce electricity and heat energy simultaneously using solar panels and heat exchangers. Since PV/T systems are exposed to the outdoors, their reliability is affected by various environmental factors. This paper presents a reliability test for a PV/T system and evaluates the test results. The reliability assessment entails performance, environment, safety, and life tests. The factor that had the greatest influence on the life of the system was the hydraulic pressure applied to the heat exchanger. A test was conducted by repeatedly applying pressure to the PV/T system, and a reliability analysis was conducted based on the test results. As a result, the shape parameter (β) value of 5.6658 and the B10life 308,577 cycles at the lower 95% confidence interval were obtained.

The Estimation of Fatigue Life for Al/CFRP Hybrid Laminated Composites using the Strain-Life Method (변형률-수명 평가기법을 이용한 Al/CFRP 하이브리드 적층 복합재의 피로수명 측정)

  • Yang, Seong Jin;Kwon, Oh Heon;Jeon, Sang Koo
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.3
    • /
    • pp.7-14
    • /
    • 2021
  • Hybrid laminated Al/carbon-fiber-reinforced plastic (CFRP) composites are attracting considerable attention from industries such as aerospace and automobiles owing to their excellent specific strength and specific rigidity. However, when this material is used to fabricate high-pressure fuel storage containers subjected to repeated fatigue loads, fatigue life evaluation for the working load is regulated as an important criterion for operational safety and ease of maintenance. Among the existing evaluation methods for these vessels, the burst test and the hydraulic repeat test require expensive facilities. Thus, the present study aims to develop an improved fatigue life test for Al/CFRP laminated hybrid composites. The test specimen was manufactured using a curved mold considering the shape of a type III high-pressure storage container. The strain-life method was used for fatigue life evaluation, and the life was predicted based on the transition life. The results indicate that the more complex the CFRP stacking sequence, the longer is the transition life. This test method is expected to be useful for ensuring the fatigue safety and economy of hybrid laminate composites.

A Study on the Barrier of Intrinsic Safety Type (본질안전방폭용 BARRIER에 관한 연구)

  • 오진석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.938-945
    • /
    • 2004
  • Intrinsic safety is generally considered the safest method of operating electrical instrumention in potentially explosive atmospheres. The method of intrinsic safety limits the energy passing into the hazardus area. The energy limitation is provided by the use of safety barriers which are mounted in the safe area. Because of the energy limitation, regardless of the fault in the hazardous area, sufficient energy cannot be released to ignite the explosive atmosphere. The following industries are known to have hazardous locations: chemical. munitions, petrochemical, auto(paint spray booths), grain, waste water, printing, distillers, pharmaceutical. breweries, cosmetics, and utilities. In this paper, a isolator type barrier for ship(LNG, LPG, etc,) and test equipment confidence are proposed. The test equipments are designed for mechanical electrical life time test and vibration. All of test results satisfy the goal and the studied barrier shows the improved confidence.

A Study on the Assessment of Blind Spot Detection for Road Alignment (도로 선형에 따른 사각지역 감시장치 평가에 관한 연구)

  • Lee, Hongguk;Park, Hwanseo;Chang, Kyungjin;Yoo, Songmin
    • Journal of Auto-vehicle Safety Association
    • /
    • v.4 no.1
    • /
    • pp.27-32
    • /
    • 2012
  • Recently, in order to reduce traffic accident related fatalities, increasing number of studies are conducted regarding the vehicle safety enhancement devices. But very few studies about test procedures and requirements for vehicle safety systems are being carried out. Since BSD, as one of the most important safety features, is installed on a new vehicle, its performance test method has to be evaluated. Independent factors irrelevant to the device types including collision position, vehicle speed and closing speed are used to calculate test distance away from the current vehicle. Effect of roadway geometry as radius of curvature is introduced to propose possible misjudgement of following vehicle as adjacent one. The study results would be utilized to enhance the test procedure of BSD performance.