Browse > Article
http://dx.doi.org/10.14773/cst.2016.15.5.245

Effects of alloys and flow velocity on welded pipeline wall thinning in simulated secondary environment for nuclear power plants  

Kim, Kyung Mo (Nuclear Materials Safety Division, Korea Atomic Energy Research Institute)
Choeng, Yong-Moo (Nuclear Materials Safety Division, Korea Atomic Energy Research Institute)
Lee, Eun Hee (Nuclear Materials Safety Division, Korea Atomic Energy Research Institute)
Lee, Jong Yeon (Nuclear Materials Safety Division, Korea Atomic Energy Research Institute)
Oh, Se-Beom (Nuclear Materials Safety Division, Korea Atomic Energy Research Institute)
Kim, Dong-Jin (Nuclear Materials Safety Division, Korea Atomic Energy Research Institute)
Publication Information
Corrosion Science and Technology / v.15, no.5, 2016 , pp. 245-252 More about this Journal
Abstract
The pipelines and equipments are degraded by flow-accelerated corrosion (FAC), and a large-scale test facility was constructed for simulate the FAC phenomena in secondary coolant environment of PWR type nuclear power plants. Using this facility, FAC test was performed on weld pipe (carbon steel and low alloy steel) at the conditions of high velocity flow (> 10 m/s). Wall thickness was measured by high temperature ultrasonic monitoring systems (four-channel buffer rod type and waveguide type) during test period and room temperature manual ultrasonic method before and after test period. This work deals with the complex effects of flow velocity on the wall thinning in weld pipe and the test results showed that the higher flow velocity induced different increasement of wall thinning rate for the carbon steel and low alloy steel pipe.
Keywords
FAC; wall thinning; ultrasonic measurement; carbon steel; low alloy steel;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 D. H. Lister, L. Liu, A. Feich, M. Khatibi, W. Cook, K. Fujiwara, E. Kadoi, T. Ohira, H. Takiguchi, and S. Uchida, ICPWS XV, Berlin, Germany (2008).
2 R. B. Dooley and V. K. Chexal, Pressure Vessel and Piping, 77, 85 (2000).   DOI
3 S. Uchida, M. Naitoh, Y. Uehara, H. Okada, N. Hiranuma, W. Sugino, S. Koshizuka, and D. H. Lister, J. Nuclear Science and Technology, 46, 31 (2009).   DOI
4 T. Satoh, Y. Shao, W. G. Cook, D. H. Lister, and S. Uchida, Corrosion, 63, 770 (2007).   DOI
5 H. Schmidt, W. Kohler and W. Kastner, Framatome ANP GmbH, France (2001).
6 E. M. Pavageau and R. Michel, Int. Conf. on FAC, Lyon, France (2008).
7 Y. S. Lee, S. H. Lee and K. M. Hwang, Corros. Sci. Tech., 15 182 (2016).   DOI
8 E. H. Lee, K. M. Kim and H. P. Kim, Corros Sci. Tech., 12 280 (2013).   DOI
9 Y. M. Cheong, H. P. Kim and D. H. Lee, Trans. of the Korean Nuclear Society Spring Meeting, Korea (2014)
10 Y. M. Cheong, H. N. Kim and H. P. Kim, Trans. KSNT Spring Conf., Korea (2013).
11 L. Dejoux, M. Personz, S. Trevin and T. Knook, Int. Conf. on FAC, Lion, France (2010).