• Title/Summary/Keyword: safety factor and displacement

검색결과 184건 처리시간 0.024초

A Permeable Wedge Crack in a Piezoelectric Material Under Antiplane Deformation (면외변형하의 압전재료에 대한 침투 쐐기균열)

  • Choi, Sung Ryul;Park, Jai Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제39권9호
    • /
    • pp.859-869
    • /
    • 2015
  • In this study, we analyze the problem of wedge cracks, which are geometrically unsymmetrical in transversely piezoelectric materials. A single concentrated antiplane mechanical load and inplane electrical load are applied at the point of the wedge surface, while one concentrated antiplane load is applied at the crack surface. The crack surfaces are considered as permeable thin slits, where both the normal component of electric displacement and the electric potential are assumed to be continuous across these slits. Using Mellin transform method, the problem is formulated and the Wiener-Hopf equation is derived. By solving the equation, the solution is obtained in a closed form. The intensity factors of the stress and the electric displacement are obtained for any crack length as well as inclined and wedge angles. Based on the results, the intensity factors are independent of the applied electric loads. The electric displacement intensity factor is always dependent on that of stress intensity factor, while the electric field intensity factor is zero. In addition, the energy release rate is computed. These solutions can be used as fundamental solutions which can be superposed to arbitrary electromechanical loadings.

Lateral Load Distribution Estimation of a PSC Girder Bridge from Dynamic Loading Test (동적재하시험을 통한 PSC 거더교의 횡분배 측정)

  • Kim, Sung-Wan;Cheung, Jin-Hwan;Kim, Seong-Do;Park, Jae-Bong;Lee, Myoung-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제21권3호
    • /
    • pp.60-68
    • /
    • 2017
  • Since the bridge is the main facility of the road that is the core of the civil infrastructure, the bridge is constructed to ensure stability and serviceability during the traffic use. In order to secure the safety of bridges, evaluating the integrity of bridges at present is an important task in the maintenance work of bridges. In general, to evaluate the load carrying capacity of bridges, it is possible to confirm the superimposed behavior and symmetric behavior of bridges by estimating the lateral load distribution factor of the bridges through vehicle loading tests. However, in order to measure the lateral load distribution factor of a commonly used bridge, a static loading test is performed. There is a difficulty in traffic control. Therefore, in this study, the static displacement component of the bridge measured in the dynamic loading test and the ambient vibration test was extracted by using empirical mode decomposition technique. The lateral load distribution was estimated using the extracted static displacement component and compared with the lateral load distribution factor measured in the static loading test.

Study of Influence Factors for Prediction of Ground Subsidence Risk

  • Park, Jin Young;Jang, Eugene;Ihm, Myeong Hyeok
    • Journal of Korean Society of Disaster and Security
    • /
    • 제10권1호
    • /
    • pp.29-34
    • /
    • 2017
  • This Analyzed case study of measuring displacement, implemented laboratory investigation, and in-situ testing in order to interpret ground subsidence risk rating by excavation work. Since geological features of each country are different, it is necessary to objectify or classify quantitatively ground subsidence risk evaluation in accordance with Korean ground character. Induced main factor that could be evaluated and used to predicted ground subsidence risk through literature investigation and analysis study on research trend related to the ground subsidence. Major factors of ground subsidence might be classified by geological features as overburden, boundary surface of ground, soil, rock and water. These factors affect each other differently in accordance with type of ground that's classified soil, rock, or complex. Then rock could be classified including limestone element or not, also in case of the latter it might be classified whether brittle shear zone or not.

A Case Study on The Stability and Reinforcement Method at a Rock Slope (암반사면의 안정성검토 및 보강방안에 관한 사례연구)

  • Chun, Byung-Sik;Lee, Seung-Eun;Kong, Jin-Young;Lim, Joo-Heon
    • Proceedings of the KSR Conference
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.1369-1375
    • /
    • 2006
  • This study analyzes stability and the reason of slope failure about cut slope on stony mountain in Acheondong, Guri and suggests the reasonal reinforce method. Based on the results of the subsurface exploration, laboratory tests, and the numerical analysis of finite element method, the potentials of plane and wedge failure are highly estimated. The safety factor was 1.2 under dry and 1.06 wet condition. The most proper reinforce method to raise the safety factor more than 1.5 was the way to control displacement by using step retaining wall, earth anchor, wire mesh, and rock anchor.

  • PDF

Seismic Landslide Hazard Maps Based on Factor of Safety and Critical Displacements of Slope (사면의 안전율과 임계변위에 의한 지진 재해 위험지도의 비교)

  • 정의송;조성원;김명모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.509-516
    • /
    • 2001
  • As the first step for the application of seismic landslide hazard maps to domestic cases, two types of hazard maps on Ul-joo from pseudostatic analysis and Newmark sliding block analysis are constructed and comllared. Arcview, the GIS program and the 1:5,000 digital maps of the test-site are used for the construction of hazard maps and tile parameters for the analyses are determined by seismic survey and laboratory tests. The results from the pseudostatic analysis have more conservative values of lower critical slope angles, although the results from the two different analyses have similar tendencies. In detail, with increasing the peak ground acceleration, the difference between the two analyses in the critical slope angle increases, while the difference decreases with increasing the maximum soil depth.

  • PDF

An Evaluation on the Fatigue Strength Characteristics for the Shot Peening Spring Steel at Low Temperature (숏피닝 가공재의 저온 피로 강도 평가)

  • 박경동;권오헌
    • Journal of the Korean Society of Safety
    • /
    • 제18권3호
    • /
    • pp.1-7
    • /
    • 2003
  • In this study, CT specimens were prepared from spring steel(SPS5) processed shot peening. The fatigue crack growth tests were carried out in the environment of the room temperature md low temperature at $25^{\circ}C$, $-30^{\circ}C$, $-50^{\circ}C$, $-70^{\circ}C$ $-100^{\circ}C$ and $-150^{\circ}C$ in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range ΔKth in the early stage of fatigue crack growth (Region I) and stress intensity factor range $\Delta$K in the stable of fatigue crack growth (Region II) were decreased in proportion to descend temperature. It was shown that the fatigue resistance characteristics and fracture strength at low temperature are considerable higher than those of mom temperature in the early stage and stable of fatigue crack growth region.

Fatigue Crack Growth Simulation of Arbitrarily Shaped Three Dimensional Cracks Using Finite Element Alternating Method (유한요소 교호법을 이용한 임의 형상의 삼차원 균열의 피로균열 성장 해석)

  • Park, Jai-Hak;Kim, Tae-Soon
    • Journal of the Korean Society of Safety
    • /
    • 제21권1호
    • /
    • pp.15-20
    • /
    • 2006
  • The finite element alternating method is a convenient and efficient method to analyze three-dimensional cracks embedded in an infinite or a finite body because the method has the property that the uncracked body and cracks can be modeled independently. In this paper the method was applied for fatigue crack growth simulation. A surface crack in a cylinder was considered as an initial crack and the crack configurations and stress intensity factors during the crack growth were obtained. In this paper the finite element alternating method proposed by Nikishkov, Park and Atluri was used after modification. In the method, as the required solution for a crack in an infinite body, the symmetric Galerkin boundary element method formulated by Li and Mear was used. And a crack was modeled as distribution of displacement discontinuities, and the governing equation was formulated as singularity-reduced integral equations.

Applications of Displacement Response Estimation Algorithm Using Mode Decomposition Technique to Existing Bridges (모드분해기법을 이용한 변위응답추정 알고리즘의 실교량 적용)

  • Chang, Sung-Jin;Kim, Nam-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제30권3A호
    • /
    • pp.257-264
    • /
    • 2010
  • Generally, estimations on the displacement as an important factor in evaluating the safety of large structures could be a barometer assessing whether the condition of the structure is deteriorating. Practically, it is not easy how to measure the displacement response to large structures like suspension bridges. In this study, as a method for estimation displacement response from strain signals, mode decomposition technique is proposed. Total displacement response is estimated by superposing quasistatic displacement response and modal displacement responses in dominant modes with larger contributions after estimating the modal displacement responses. If foiled strain gauges are used to measure strain signals, there would likely to generate electric noise, what's more, the more measuring points there are the more economic burden it could be. In order to solve such problems, fiber optic bragg-grating(FBG) sensors were used, which have multi-point measurements with no effect on electric noises. Therefore, the experiment was performed through dynamic load test of suspension bridge and plate-girder bridge to review the possibility for using mode decomposition technique.

Evaluation of Design Safety for Butterfly Valve (버터플라이 밸브의 설계 안전도 평가)

  • Lee, Seung-Pyo;Kim, Kwang-Suk;Koh, Byung-Kab
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • 제18권1호
    • /
    • pp.29-35
    • /
    • 2009
  • Butterfly valve is a kind of rotational valve which opens and closes the flow of fluid on rotating the disk 90 degrees in the valve body. In this paper, butterfly valve design safety evaluation which is based on the international valve specifications is investigated. Both body and disk of the butterfly valve are considered under the normal and pressurized operating conditions. A finite element analysis is carried out to compute the distribution of the displacement, stress and safety factor by using ANSYS. On the basis of calculated design safety we offer the design modification and compare with them.

A Case Study on the Effect of Damaged Expansion Joint for Safety Assessment of Highway Bridges

  • Kim, Kwang-Il;Chai, Won-Kyu;Lee, Myeong-Gu;Son, Young-Hyun
    • International Journal of Safety
    • /
    • 제9권2호
    • /
    • pp.16-21
    • /
    • 2010
  • In this study, the variations of transformed impact factors and load carrying capacity of highway bridges measured from the state of expansion joint are evaluated. the field loading tests were performed on the highway bridge with damaged expansion joint to investigate the variation of the load carrying capacity. From the field loading tests in case that damaged expansion joint exist or do not exist, the static displacements and dynamic displacements were measured, and TIF were calculated, respectively. dynamic test is performed in order to estimate dynamic displacement and TIF according to the level of damage of expansion joint. From the results of TIF, the load carrying capacity of highway bridges with damaged expansion joint were estimated.