• Title/Summary/Keyword: safety diagnosis

Search Result 980, Processing Time 0.03 seconds

Functional Modeling of Nuclear Power Plant Using Multilevel Flow Modeling Concept

  • Park, Jin-Kyun;Chang, Soon-Heung;Cheon, Se-Woo;Lee, Jung-Woon;Sim, Bong-Shick
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.340-345
    • /
    • 1996
  • Because of limited resources of time and information processing capability during abnormal situation, diagnosis is difficult tasks in nuclear power plant (NPP) operators. Moreover since minimizing of adverse consequences according to process abnormalities is vital for the safety of NPP, introducing of diagnosis support systems have particularly emphasized. However, considerable works to develop effective diagnostic support system are not sufficiently fulfilled because of the complexity of NPP is one of the major problems. To cope with this complexity, a lot of model-based diagnosis support systems have considered and implemented worldwide. In this paper, as a prior step to development of model-based diagnosis support systems, primary side of pressurized water reactor is functionally modeled by multilevel flow modeling (MFM) concept. MFM is suitable for complex system modeling and for diagnosis of abnormalities. Furthermore, knowledge-based diagnosis process, of NPP operator could be supported because this diagnosis strategy can represent operator's one.

  • PDF

Development of Moving and Attaching Diagnosis Device Using IoT (IoT 활용 이동착탈식 열화 진단 장치 개발)

  • Ka, Chool-Hyun;Lee, Dong-Gyu;Kim, Jin-Sa
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.9
    • /
    • pp.596-601
    • /
    • 2017
  • The advancement and diversification of urban functions has caused an increasing need to improve the reliability of power supplies. The diversification of urban areas causes social disruptions by paralyzing urban functions during power outages. A large power outage occurs in the event of an accident, owing to the subduction of distribution lines. Therefore, in recent years, for the sake of the environment and safety, the safety diagnosis of electric power facilities has become an important issue. In this system, because thermal information changes rapidly during unattended monitoring owing to heat concentration phenomenon due to abnormal load or deterioration, studies have been conducted on the development of a device that can notify the manager at all times.

Failure Diagnosis of Main Feedwater System for SIR using DES (DES를 이용한 SIR의 주급수계통의 고장진단)

  • Park, J. H.;Kim, H. P.;Kim, C. S.;Lee, S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.570-573
    • /
    • 2001
  • Safety is very important to operate nuclear power plant. To have the safety, nuclear power plant should be run without trouble. This paper presents the application of a failure diagnosis approach based on discrete event system theory to the Main Feedwater System for Safe Integral Reactor.

  • PDF

A Study on the Development of Finger Fault Diagnosis System for Industrial Robots (산업용 로보트의 손가락고장 진단시스템 개발에 관한 연구)

  • 김병석;송수정
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.3
    • /
    • pp.110-114
    • /
    • 1995
  • Bacause of increasing the use in Industrial robots, the accident rate has been increasing now a days. The prediction of accident could be very hard as there are so many factors which occured accident. Removing the accident factors in industrial robots can be diagnosed by the human experts who are very familiar with in those area. The purpose of this study is a development of finger fault diagnosis system for industrial robots. We have many problems such as a long time to get the expert knowledge and the number of expert to be limited. To solve these problems lots of investment and time are required, and then the exepert system to finger fault diagnosis for industrial robots can be applied.

  • PDF

Development of Ultrasonic Sensor for Engine Condition Diagnosis of EDG (비상디젤발전기 엔진 상태진단 초음파 탐촉자 개발)

  • Lee, Sang-Guk;Choi, Kwang-Hee
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.31-35
    • /
    • 2013
  • The emergency AC power supply system of the nuclear power plant is designed to supply the power to the nuclear power plant at the emergency operating condition. The safety function of the diesel generator at the nuclear power plant is to supply AC electric power to the safety system whenever the preferred AC power supply is unavailable. The reliable operation of onsite standby diesel generator should be ensured by a condition monitoring system designed to maintain, monitor and forecast the reliability level of diesel generator. The purpose of this paper is to improve the existing ultrasonic sensor used for condition diagnosis of engine fuel pump and cylinder head for the accurate diagnosis in actual engine condition of emergency diesel generator(EDG). As a result of this study, we could design and develop much more reliable ultrasonic sensor than existing ones.

Safety diagnosis process for deteriorated buildings using a 3D scan-based reverse engineering model

  • Jae-Min Lee;Seungho Kim;Sangyong Kim
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.79-88
    • /
    • 2023
  • As the number of deteriorated buildings increases, the importance of safety diagnosis, maintenance, and the repair of buildings also increases. Traditionally, building condition assessments are performed by one person or one company and various inspections are needed. This entails a subjective judgment by the inspector, resulting in different assessment results, poor objectivity and a lack of reliability. Therefore, this study proposed a method to bring about accurate grading results of building conditions. The limitations of visual inspection and condition assessment processes previously conducted were identified by reviewing existing studies. Building defect data was collected using the reverse-engineered three-dimensional (3D) model. The accuracy of the results was verified by comparing them with the actual evaluation results. The results show a 50% time-saving to the same area with an accuracy of approximately 90%. Consequently, defect data with high objectivity and reliability were acquired by measuring the length, area, and width. In addition, the proposed method can improve the efficiency of the building diagnosis process.

A Study on the Safety Diagnosis for Electric Power Systems Using Thermal Imaging Analysis (열화상 분석을 이용한 전력시스템의 안전진단에 관한 연구)

  • Yu, Byeong-Yeol;Kim, Chan-O
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.2
    • /
    • pp.26-31
    • /
    • 2011
  • In this paper, the safety diagnosis using thermal image analysis is described for power equipments. The conventional three-phase comparison method has only provided the results of thermal comparison for the equipments. The proposed method defines the conditions of poor connection by visual checks, and supports the criteria with each thermal rise step. As a result, the thermal difference from $5^{\circ}C$ to $10^{\circ}C$ meant the warning state. In addition, the thermal difference more than $10^{\circ}C$ meant that the connection status was unbalanced. In this case, the countermeasure might be the internal load distribution. If the thermal difference more than $20^{\circ}C$ is observed, it means a hot spot at the poor connection. If the hot spot is observed all over the surface, its cause was the unbalanced load, which made the conductive parts discolored and raised the possibility of oxidization or $Cu_2O$ generation. This diagnostic technology employing thermal image analysis method can be directly applied in the field and ensures the safety of equipments.

A Study on the Level of BCMS(Business Continuity Management System) of Small and Medium Enterprises (중소기업의 재해경감활동관리체계 수준진단(Checklist)에 관한 연구)

  • Lee, Mi Sun;Kim, Min Ji;Kim, Do Yeon
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.4
    • /
    • pp.122-128
    • /
    • 2017
  • Recently, accidents such as human accidents are increasing rapidly due to natural disasters and changes in social conditions due to abnormal weather. As a result, damage has been causing massive damage unlike the past. In the case of small and medium enterprises excluding financial institutions and big company, there is no system for prevention and restoration for stable operation from various risks such as human and natural disasters. As the current disaster continues, public and private companies have raised the need for BCM, and with the introduction of the ISO22301 certification system, the company has been establishing and operating Enterprise Disaster Management Standards in the Ministry of Public Safety and Security since 2007. However, in most SMEs, it is hard to bear the input of internal labor and investment cost, and there is a lack of personnel with expertise to conduct BCM diagnosis. Therefore, in this paper, we will study the diagnosis level of enterprise continuity plan which is commonly used in Korea and abroad. Based on this, we will study the BCM system diagnosis method which can be applied to small and medium enterprises in Korea efficiently.

A Study of Structural Safety Diagnosis using Frequency Domain Analysis of Impact-Echo Method (충격반향기법의 주파수영역 해석을 이용한 구조물 안전진단에 관한 연구)

  • 안제훈;서백수
    • Tunnel and Underground Space
    • /
    • v.14 no.1
    • /
    • pp.35-42
    • /
    • 2004
  • Impact-echo is a method for non-destructive testing of concrete structure. This method is based on the use of impact-generated stress wave which is propagated and reflected from internal flaws within concrete structure and external surface. In this study, we performed non-destructive testing using impact-echo methods for safety diagnosis of civil engineering and building structures. There are testing cases for the three models having one-dimensional form ; The first case is the measurement of thickness change of the model, the second is the detection of cavity in the model, and the third is the predictions of the lining thickness and the position of the cavity under tunnel lining condition.

A fuzzy expert system for diagnosis assessment of reinforced concrete bridge decks

  • Ramezanianpour, Ali Akbar;Shahhosseini, Vahid;Moodi, Faramarz
    • Computers and Concrete
    • /
    • v.6 no.4
    • /
    • pp.281-303
    • /
    • 2009
  • The lack of safety of bridge deck structures causes frequent repair and strengthening of such structures. The repair induces great loss of economy, not only due to direct cost by repair, but also due to stopping the public use of such structures during repair. The major reason for this frequent repair is mainly due to the lack of realistic and accurate assessment system for the bridge decks. The purpose of the present research was to develop a realistic expert system, called Bridge Slab-Expert which can evaluate reasonably the condition as well as the service life of concrete bridge decks, based on the deterioration models that are derived from both the structural and environmental effects. The diagnosis assessment of deck slabs due to structural and environmental effects are developed based on the cracking in concrete, surface distress and structural distress. Fuzzy logic is utilized to handle uncertainties and imprecision involved. Finally, Bridge Slab-Expert is developed for prediction of safety and remaining service life based on the chloride ions penetration and fick's second law. Proposed expert system is based on user-friendly GUI environment. The developed expert system will allow the correct diagnosis of concrete decks, realistic prediction of service life, the determination of confidence level, the description of condition and the proposed action for repair.