• Title/Summary/Keyword: sacrificial-anode system

Search Result 32, Processing Time 0.022 seconds

Investigation of the Effective Range of Cathodic Protection for Concrete Pile Specimens Utilizing Zinc Mesh Anode

  • Duhyeong Lee;Jin-A Jeong
    • Corrosion Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.195-202
    • /
    • 2024
  • A zinc mesh sacrificial anode cathodic protection method is recently being developed to protect the reinforced concrete structure in a marine environment. However, comprehensive information regarding the cathodic protection technology applied to reinforced concrete test specimens utilizing zinc mesh sacrificial anodes remains limited. Particularly, no research has investigated the effective range of sacrificial anode cathodic protection in a reinforced concrete structure regarding the transmission of protection current from zinc mesh sacrificial anode to the reinforced concrete structure, particularly concerning effects of temperature variations. This study examined the distribution of potential and current using a long single rebar and several segment reinforcing bars inside a horizontal beam. Vertical pile specimens were applied with a zinc mesh sacrificial anode to simulate concrete bridges or harbor structures. To check the effect of cathodic protection, cathodic protection potential and current of the reinforced concrete specimens were measured and 100 mV depolarization criterion test was performed. It was confirmed that effect of cathodic protection varied depending on resistivity and temperature. The cathodic protection test of pile specimens revealed that the maximum reachable range of cathodic protection current was 10 cm from the waterline as observed in the experiment.

Critical Design Issues on the Cathodic Protection Systems of Ships

  • Lee, Ho Il;Lee, Chul Hwan;Jung, Mong Kyu;Baek, Kwang Ki
    • Corrosion Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.90-95
    • /
    • 2007
  • Cathodic protection technology has been widely used on ship's outer hull and inner side of ballast water tanks as a supplementary corrosion protection measure in combination with protective organic coatings. Impressed current cathodic protection system is typically opted for the ship's hull and, sacrificial anode system, for ballast water tanks. The anticipation and interest in cathodic protection system for ships has been surprisingly low-eyed to date in comparison with protective coatings. Computational analysis for the verification of cathodic protection design has been tried sometimes for offshore marine structures, however, in commercial shipbuilding section, decades old design practice is still applied, and no systematic or analytical verification work has been done for that. In this respect, over-rotection from un-erified initial design protocol has been also concerned by several experts. Especially, it was frequently reported in sacrificial anode system that even after full design life time, anode was remaining nearly intact. Another issue for impressed current system, for example, is that the anode shield area design for ship's outer hull should be compromised with actual application situation, because the state-of-the-art design equation is quite impractical from the applicator's stand. Besides that, in this study, some other critical design issues for sacrificial anode and impressed current cathodic protection system were discussed.

Effect of the Chathodic Protection in Concrete by Applying Sacrificial Anode System (희생양극방식을 응용한 콘크리트 중의 철근의 전기방식 효과)

  • 김성수;김홍삼;김진철;김종필;박광필
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.87-92
    • /
    • 2001
  • Reinforced concrete have defect in durability due to carbonation, freezing and thawing, and penetration of chloride ions with time in spite of superb structure. Especially steel corrosion in concrete due to penetration of chloride ions have result in a marked decline in service life. The principal purpose in this study is to see effect of sacrificial anode cathodic system, one of the electrochemical methods in order to the control of steel corrosion in concrete. There are chloride content in concrete in cracked and no cracked specimen with cathodic protection. To recognize the effect of sacrificial anode cathodic protection, Instant-off potential are measured. We have the excellent effect for control steel corrosion adaption sacrificial anode cathodic system.

  • PDF

Effects of the Protection for Rebars by Embeded Sacrificial Anode in Concrete (희생양극재의 매입에 의한 콘크리트 중의 전기방식 효과)

  • 김성수;김홍삼;김종필
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1207-1212
    • /
    • 2001
  • Reinforced concrete has defects in durability due to carbonation, freezing and thawing, and penetration of chloride ions with elapse of time in spite of super structure. Especially steel corrosion in concrete due to penetration of chloride ions has result in a severe decline in service life. The principal purpose of this study is to estimate effects of sacrificial anode cathodic system, one of the electrochemical methods in order to control of steel corrosion in concrete. There are chloride content in concrete in cracked and non cracked specimen with cathodic protection. To investigate the effect of sacrificial anode cathodic protection, potential-decay with current density, corrosion ratio, etc. are measured. We have the excellent effect for control steel corrosion adaption sacrificial anode cathodic system.

  • PDF

Effect of Cathodic Protection of Adjacent Steel Piles on the Life of Sacrificial Anode (희생양극의 수명에 미치는 인접 강파일의 음극방식 영향)

  • Moon, Kyung-Man;Lee, Kyu-Hwan;Cho, Hwang-Rae;Lee, Myung-Hoon;Kim, Yun-Hae;Kim, Jin-Gyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.76-81
    • /
    • 2008
  • There are two cases when the life of a sacrificial anode is shortened from the designed life: one case results from self-corrosion of the anode due to contamination by sea water in the other case, however, electrical current to protect some given steel piles overflows to protect other, adjacent non-protected steel piles. In this study, the variation of polarization potential of nine steel piles, being protected cathodically and with anode-producing current between anode and steel piles, was investigated. Parameters were varied, such as the eighth and ninth steel piles either connected electrically or not, and whether the ninth steel pile was protected by another sacrificial anode or not. The current produced by the sacrificial anode decreased when the ninth steel pile was cathodically protected by the anode of another pile. However, produced current increased when the ninth steel pile was not connected to another anode. The study concludes that the life of a sacrificial anode can be prolonged or shortened depending on whether adjacent steel piles are cathodically protected or not.

A Study on Mitigation of Rail Corrosion using Sacrificial Anode Cathodic Protection Method (희생양극법을 이용한 레일부식 저감 방안에 관한 연구)

  • Choi, Jung-Youl;Kim, Jun-Hyung;Lee, Kyu-Yong;Kim, Young-Ki;Park, Jong-Yoon;Song, Bong-Hwan;Seol, Jin-Woong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.54-60
    • /
    • 2017
  • A railway rail will be corroded by the repetitive sea wind and fog in the splash and tidal zone such as Youngjong grand bridge. And these rusts of rail could be increased by increasing service period, and it frequently occurred the safety accidents or disorders in electrical problem. In this study, the sacrificial anode cathodic protection method was proposed as a measures for reducing the corrosion of the railway rails in the oceanic climate conditions. As the results of immersion test using the salt water during four months, the sacrificial anode cathodic protection method using the aluminum anode(Al-anode) was evaluated that a distinct effect on corrosion reduction in the rails. Therefore the sacrificial anode cathodic protection method was experimentally proven that a disorders in aspects electric and signal of railway operation condition such as direct fixation track system in Youngjong grand bridge could be prevented by reducing rust falling from the rail. In addition, the installation conditions of the anodes directly affect the transmission range of corrosion potential, the sectional loss of anode, and the corrosion reduction effect. Therefore, to expect the corrosion reduction effect of rails under the oceanic climate conditions for railway track, it was important to adopted the appropriate spacing of anode installation by considering the actual field conditions.

The effect of cathodic protection system by means of zinc sacrificial anode on pier in Korea

  • Jeong, Jin-A;Jin, Chung-Kuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1206-1211
    • /
    • 2014
  • This study has been conducted to confirm the effect of sacrificial anode cathodic protection system for 90 days to protect corrosion on pier that is located in Korea. The cathodically protected structure was a slab and a pile cap. Before the construction of cathodic protection system, the macrography was carried out. As a result of the macrography, many corrosion traces were confirmed in this structure. The trace was mainly focused on joint and zones that concrete cover was eliminated. To apply the cathodic protection system, many onsite techniques have been adopted. In addition, to confirm the inner state of steel in concrete properly, a corrosion monitoring sensor (DMS-100, Conclinic Co. Ltd) has been applied. Test factors were corrosion & cathodic protection potential, 4 hour depolarization potential, resistivity and current density. After 90 days from the installation of cathodic protection system, it could confirm that proper corrosion protection effect was obtained by considering the result of tests.

Study on the Corrosionproofing in Concrete by Cathodic Protection (전위변화에 의한 콘크리트내의 철근방식에 관한 연구)

  • Lim, Seo-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.213-220
    • /
    • 1999
  • The purpose of this study is to apply cathodic protection to reinforced concrete structure and provide fundamental data to prevent the corrosion. The theory of cathodic protection of steel in concrete is to apply sufficient direct current so that corroding anodes on the steel are prevented from discharging ions. Two methods are used to supply the external current. In one, the protected metal is the cathode by connecting it to a more active metal. In the second, an external direct current power source supplies the current. The first is the sacrificial-anode system and the second the impressed-current system. The study results showed that the corrosion of the reinforcing steel in concrete could be enormously decreased by using protective current. The sacrificial anode and concrete nave to be adhered closely each in order to prevent the corrosion of reinforcing steel.

  • PDF

An Experimental Study on the Steel Corrosion Control in Concrete by using the Sacrificial Anode System (희생양극법을 응용한 콘크리트중의 철근부식 억제에 대한 실험적 연구)

  • 문한영;김성수;류재석;김홍삼;김성섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.191-196
    • /
    • 1997
  • Steel is the most used as materials for construction and corrosion expansion of steel due to outdoor corrosive environmental factor bring serious problem on the durability of concrete structures time after time. It is the purpose of this study to see whether it is effective of not, when sacrificial anode method is adapted. Indoor accelerated corrosion testing was carried out to see its effective in a short term. From the mid result, potential of steel in concrete in case of adapting sacrifice anode method satisfacts protection standard value (less than-850mV vs CSE), therefore sacrificial anode method is considered as a proper protection steps against corrosion of steel.

  • PDF

A study on the performance of the sacrificial anode used for cathodic protection of a marine bridge after 8 years (해상 교량에 설치된 희생양극식 전기방식의 8년 이후의 성능에 관한 연구)

  • Jeong, Jin-A;Ha, Ji-Myung;Lee, Du-Young;Lee, Sang-Deuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.510-515
    • /
    • 2016
  • Recently, corrosion occurred on the piles of a marine bridge located on the NamHae expressway in Korea. A sacrificial anode cathodic protection system was installed to prevent corrosion damage in the marine bridge. In the case of the marine bridge in this study, the sacrificial anode cathodic protection system was applied at the tidal and splash zones of the piles because the upper part of the structure was not corroded, and because corrosion occurs at the tidal and splash zones due to sea tides. To verify the performance of the sacrificial anode cathodic protection system 8 years later, cathodic protection (CP) current, CP potential, and degree of depolarization were measured. The experimental results on the performance of the sacrificial anode cathodic protection system from a total of 60 piles were classified into 4 categories: good CP effect results (13 piles), partial CP effect results (27 piles), temporarily erroneous results (5 piles), and need for maintenance because of delamination (15 piles). It was determined that additional repairs are required, such as the application of bulk anodes and jacket casings, for piles where the CP effect is poor.