• Title/Summary/Keyword: s equations

Search Result 5,061, Processing Time 0.044 seconds

A MATRIX FORMULATION OF THE TAU METHOD FOR FREDHOLM AND VOLTERRA LINEAR INTEGRO-DIFFERENTIAL EQUATIONS

  • Aliabadi, M.-Hosseini;Shahmorad, S.
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.667-677
    • /
    • 2002
  • In this paper we obtain the matrix Tau Method representation of a general boundary value problem for Fredholm and Volterra integro-differential equations of order $\nu$. Some theoretical results are given that simplify the application of the Tau Method. The application of the Tau Method to the numerical solution of such problems is shown. Numerical results and details of the algorithm confirm the high accuracy and user-friendly structure of this numerical approach.

UNSTEADY FLUID FIELD ANALYSIS OF STAGING SYSTEM (단분리 비정상 유동장의 수치적 해석)

  • Yoon Y. H.;Kwon K. B.;Hong S. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.261-267
    • /
    • 2005
  • The unsteady flow analysis of staging system is conducted. This study focuses on comparing the results of two different governing equations between Euler equations and Navier-Stokes equations. The Chimera grid scheme is applied to moving simulations for unsteady flow analysis with dynamic simulation. As a result, it is certified that inviscid simulation have capabilities enough to analyze the present staging problem.

  • PDF

ON THE STABILITY OF A BETA TYPE FUNCTIONAL EQUATIONS

  • Kim, Gwang-Hui;Lee, Young-Whan
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.429-445
    • /
    • 2004
  • In this paper we investigate the generalized Hyers-Ulam-Rassias stability for a functional equation of the form $f(\varphi(x,y)){\;}={\;}\phi(x,y)f(x,y)$, where x, y lie in the set S. As a consequence we obtain stability in the sense of Hyers, Ulam, Rassias, Gavruta, for some well-known equations such as the gamma, beta and G-function type equations.

ALGORITHMS FOR SOLVING MATRIX POLYNOMIAL EQUATIONS OF SPECIAL FORM

  • Dulov, E.V.
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.41-60
    • /
    • 2000
  • In this paper we consider a series of algorithms for calculating radicals of matrix polynomial equations. A particular aspect of this problem arise in author's work. concerning parameter identification of linear dynamic stochastic system. Special attention is given of searching the solution of an equation in a neighbourhood of some initial approximation. The offered approaches and algorithms allow us to receive fast and quite exact solution. We give some recommendations for application of given algorithms.

THREE-POINT BOUNDARY VALUE PROBLEMS FOR A COUPLED SYSTEM OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Yang, Wengui
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.773-785
    • /
    • 2012
  • In this paper, we establish sufficient conditions for the existence and uniqueness of solutions to a general class of three-point boundary value problems for a coupled system of nonlinear fractional differential equations. The differential operator is taken in the Caputo fractional derivatives. By using Green's function, we transform the derivative systems into equivalent integral systems. The existence is based on Schauder fixed point theorem and contraction mapping principle. Finally, some examples are given to show the applicability of our results.

GRADIENT ESTIMATES AND HARNACK INEQUALITES OF NONLINEAR HEAT EQUATIONS FOR THE V -LAPLACIAN

  • Dung, Ha Tuan
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1285-1303
    • /
    • 2018
  • This note is motivated by gradient estimates of Li-Yau, Hamilton, and Souplet-Zhang for heat equations. In this paper, our aim is to investigate Yamabe equations and a non linear heat equation arising from gradient Ricci soliton. We will apply Bochner technique and maximal principle to derive gradient estimates of the general non-linear heat equation on Riemannian manifolds. As their consequence, we give several applications to study heat equation and Yamabe equation such as Harnack type inequalities, gradient estimates, Liouville type results.

TWO COMPARISON THEOREMS OF BSDES

  • Huang, Xiao-Qin;Wang, Mian-Sen;Jia, Jun-Guo
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.377-385
    • /
    • 2007
  • In this paper, by the equations of Mao [9] and Peng [5], we use the martingale method to establish the comparison theorems of backward stochastic differential equations (BSDEs). We generalize the results of Cao-Yan [1].

The Equations of Motion for the Stretcthing, Bending and Twisting of a Marine Pipeline Containing Flowing Fluids (내부 유체 유동을 포함한 해저 파이프 라인의 인장 굽힘 비틀림 운동 방정식)

  • 서영태
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.151-156
    • /
    • 1994
  • The equations of motion of a submarine pipeline with the internal flowing fluid and subject to hydrodynamic loadings are derived by using Hamilton's principle. Coupling between the bending and the longitudinal extension due to axial load and thermal expansion are considered. Coupling between the twisting and extension are not considered. The equations of motion are well agreed with the results which are derived by the vector method.

  • PDF

ON THE STABILITY OF FUNCTIONAL EQUATIONS IN n-VARIABLES AND ITS APPLICATIONS

  • KIM, GWANG-HUI
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.2
    • /
    • pp.321-338
    • /
    • 2005
  • In this paper we investigate a generalization of the Hyers-Ulam-Rassias stability for a functional equation of the form $f(\varphi(X))\;=\;\phi(X)f(X)$, where X lie in n-variables. As a consequence, we obtain a stability result in the sense of Hyers, Ulam, Rassias, and Gavruta for many other equations such as the gamma, beta, Schroder, iterative, and G-function type's equations.

Stability Criterion for Volterra Type Delay Difference Equations Including a Generalized Difference Operator

  • Gevgesoglu, Murat;Bolat, Yasar
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.1
    • /
    • pp.163-175
    • /
    • 2020
  • The stability of a class of Volterra-type difference equations that include a generalized difference operator ∆a is investigated using Krasnoselskii's fixed point theorem and some results are obtained. In addition, some examples are given to illustrate our theoretical results.