• 제목/요약/키워드: runx3

검색결과 117건 처리시간 0.025초

Response of osteoblast-like cells cultured on zirconia to bone morphogenetic protein-2

  • Han, Seung-Hee;Kim, Kyoung-Hwa;Han, Jung-Seok;Koo, Ki-Tae;Kim, Tae-Il;Seol, Yang-Jo;Lee, Yong-Moo;Ku, Young;Rhyu, In-Chul
    • Journal of Periodontal and Implant Science
    • /
    • 제41권5호
    • /
    • pp.227-233
    • /
    • 2011
  • Purpose: The aim of this study was to compare osteoblast behavior on zirconia and titanium under conditions cultured with bone morphogenetic protein-2. Methods: MC3T3-E1 cells were cultured on sandblasted zirconia and sandblasted/etched titanium discs. At 24 hours after seeding MC3T3-E1, the demineralized bone matrix (DBM) gel alone and the DBM gel with bone morphogenetic protein-2 (BMP-2) were added to the culture medium. The surface topography was examined by confocal laser scanning microscopy. Cellular proliferation was measured at 1, 4, and 7 days after gel loading. Alkaline phosphatase activity was measured at 7 days after gel loading. The mRNA expression of ALPase, bone sialoprotein, type I collagen, runt-related transcription factor 2 (Runx-2), osteocalcin, and osterix were evaluated by real-time polymerase chain reaction at 4 days and 7 days. Results: At 1, 4, and 7 days after loading the DBM gel alone and the DBM gel with BMP-2, cellular proliferation on the zirconia and titanium discs was similar and that of the groups cultured with the DBM gel alone and the DBM gel with BMP-2 was not significantly different, except for titanium with BMP-2 gel. ALPase activity was higher in the cells cultured with BMP-2 than in the other groups, but there was no difference between the zirconia and titanium. In ALPase, bone sialoprotein, osteocalcin, Runx-2 and osterix gene expression, that of cells on zirconia or titanium with BMP-2 gel was much more highly increased than titanium without gel at day 7. The gene expression level of cells cultured on zirconia with BMP-2 was higher than that on titanium with BMP-2 at day 7. Conclusions: The data in this study demonstrate that the osteoblastic cell attachment and proliferation of zirconia were comparable to those of titanium. With the stimulation of BMP-2, zirconia has a more pronounced effect on the proliferation and differentiation of the osteoblastic cells compared with titanium.

Optimized Internal Control and Gene Expression Analysis in Epstein-Barr Virus-Transformed Lymphoblastoid Cell Lines

  • Nam, Hye-Young;Kim, Hye-Ryun;Shim, Sung-Mi;Lee, Jae-Eun;Kim, Jun-Woo;Park, Hye-Kyung;Han, Bok-Ghee;Jeon, Jae-Pil
    • Genomics & Informatics
    • /
    • 제9권3호
    • /
    • pp.127-133
    • /
    • 2011
  • The Epstein-Barr virus-transformed lymphoblastoid cell line (LCL) is one of the major genomic resources for human genetics and immunological studies. Use of LCLs is currently extended to pharmacogenetic studies to investigate variations in human gene expression as well as drug responses between individuals. We evaluated four common internal controls for gene expression analysis of selected hematopoietic transcriptional regulatory genes between B cells and LCLs. In this study, the expression pattern analyses showed that TBP (TATA box-binding protein) is a suitable internal control for normalization, whereas GAPDH (glyceraldehyde-3-phosphate dehydrogenase) is not a good internal control for gene expression analyses of hematopoiesis-related genes between B cells and LCLs at different subculture passages. Using the TBP normalizer, we found significant gene expression changes in selected hematopoietic transcriptional regulatory genes (downregulation of RUNX1, RUNX3, CBFB, TLE1, and NOTCH2 ; upregulation of MSC and PLAGL2) between B cells and LCLs at different passage numbers. These results suggest that these hematopoietic transcriptional regulatory genes are potential cellular targets of EBV infection, contributing to EBV-mediated B-cell transformation and LCL immortalization.

동과 발효물의 조골세포 분화 촉진 및 파골세포 생성 억제 효과 (Effect of Fermented Benincasa hispida cong. Extract on Promotion of Osteoblast Differentiation and Inhibition of Osteoclast Generation)

  • 최예은;양정모;유희원;조주현
    • 한국식품위생안전성학회지
    • /
    • 제37권5호
    • /
    • pp.364-371
    • /
    • 2022
  • 본 연구는 천연물의 효능을 미생물을 이용하여 증가시키거나 새로운 효능을 도출하고자 하는 연구를 통해 Bacillus subtilis CJH 101 및 Bacillus safensis CJH 102 로 발효한 동과 발효물(HR1901-BS, HR1901-BSaf)의 뼈 건강 관련 효능을 평가하였다. 뼈를 형성하는 조골세포의 증식을 비교한 결과, 동과 발효물은 조골세포의 증식을 농도 유의적으로 증가시키는 것으로 나타났으며 조골세포 분화 유도 및 무기질화에 관여하는 ALP 활성을 효과적으로 촉진시켰다. 또한 조골세포 분화를 조절하는 전사 인자인 ALP, OCN, Runx2의 발현이 증가됨을 확인하였다. 뼈를 흡수하는 파골세포의 활성을 확인하기 위해 TRAP 활성을 측정한 결과 동과 발효물은 TRAP 활성을 유의적으로 억제하는 것을 확인하였다. 따라서 동과 발효물(HR1901-BS, HR1901-BSaf)은 조골세포의 활성 증가 및 파골세포의 활성 억제를 통해 골대사에 긍정적인 영향을 미치므로 뼈 대사 및 골다공증 관련 기능성 식품 소재로 활용 가능할 것으로 사료된다.

𝛽-Glucosidase 활성이 높은 유산균을 이용한 한국가시오갈피 발효 추출물의 Syringaresinol의 함량 및 MC3T3E1조골세포 분화 평가 (Evaluation of Syringaresinol Content and MC3T3E1 Osteoblast Differentiation of Fermented Extracts of Eleutherococcus senticosus Using Lactobacillus ssp. with High 𝛽-Glucosidase Activity)

  • 강민지;강민경;오상남
    • Journal of Dairy Science and Biotechnology
    • /
    • 제42권2호
    • /
    • pp.48-63
    • /
    • 2024
  • 유산균이 가지고 있는 𝛽-glucosidase활성이 가시오갈피(A. senticosus)의 주요 활성 성분인 EE와 EB와 같은 식물성 화합물을 분해하여 syringaresinol(SYR)로 전환하는 역할을 하는지 탐구하였다. 김치 등에서 분리배양한 유산균 125개 중, 𝛽-glucosidase 활성을 지닌 균주를 세포 외 및 내부에서 스크리닝된 것이 46종으로 확인되었으며, 특히 L. curvatus인 LFFR 20-011과 L. brevis인 LFFR 20-043 등이 가시오갈피 발효를 통해 SYR의 생산을 2배 이상 함량을 증가시키는 것을 확인할 수 있었다. 추가적으로, 본 연구는 SYR이 조골세포 분화에 미치는 영향을 조사하였다. SYR처리는 분화를 유도하고 조골세포 분화 초기 마커인 Runx2, Type I COL, 및 성숙 마커인 osteocalcin(OCN)의 mRNA 발현 수준을 유의미하게 증가시켰다. 이러한 결과는 생물전환기술로 증가된 한국가시오갈피의 SYR의 존재가 뼈의 건강과 성장에 긍정적인 영향을 줄 수 있는 잠재력을 가지고 있음을 시사하며, 향후 고령시대의 근골격계 건강 증진에 관한 연구로의 가능성을 제시하여, 한국가시오갈피의 유산균 발효물에 대한 건강기능식품으로써의 기초적인 자료를 제공한다.

Luteolin Induces the Differentiation of Osteoblasts

  • Ko, Seon-Yle
    • International Journal of Oral Biology
    • /
    • 제35권3호
    • /
    • pp.99-106
    • /
    • 2010
  • Luteolin is a flavonoid that exists in a glycosylated form in celery and green pepper. Flavonoids possess antioxidant and anti-inflammatory properties and can reduce the expression of key inflammatory molecules in macrophages and monocytes. It has been reported also that some flavonoids have effects on bone metabolism. The effects of luteolin on the function of osteoblasts were investigated by measuring cell viability, alkaline phosphatase activity, type I collagen production, osteoprotegerin secretion, Wnt promoter activity, BMP-2 and Runx2 expression and calcified nodule formation. Luteolin has no effects upon osteoblast viability but induced an increase in alkaline phosphatase activity, type I collagen production and a decrease in osteoprotegerin secretion in these cells. Luteolin treatment also upregulated BMP-2 mRNA expression. These results suggest that luteolin may be a regulatory molecule that facilitates the differentiation of osteoblasts.

The TGFβ→TAK1→LATS→YAP1 Pathway Regulates the Spatiotemporal Dynamics of YAP1

  • Min-Kyu Kim;Sang-Hyun Han;Tae-Geun Park;Soo-Hyun Song;Ja-Youl Lee;You-Soub Lee;Seo-Yeong Yoo;Xin-Zi Chi;Eung-Gook Kim;Ju-Won Jang;Dae Sik Lim;Andre J. van Wijnen;Jung-Won Lee;Suk-Chul Bae
    • Molecules and Cells
    • /
    • 제46권10호
    • /
    • pp.592-610
    • /
    • 2023
  • The Hippo kinase cascade functions as a central hub that relays input from the "outside world" of the cell and translates it into specific cellular responses by regulating the activity of Yes-associated protein 1 (YAP1). How Hippo translates input from the extracellular signals into specific intracellular responses remains unclear. Here, we show that transforming growth factor β (TGFβ)-activated TAK1 activates LATS1/2, which then phosphorylates YAP1. Phosphorylated YAP1 (p-YAP1) associates with RUNX3, but not with TEAD4, to form a TGFβ-stimulated restriction (R)-point-associated complex which activates target chromatin loci in the nucleus. Soon after, p-YAP1 is exported to the cytoplasm. Attenuation of TGFβ signaling results in re-localization of unphosphorylated YAP1 to the nucleus, where it forms a YAP1/TEAD4/SMAD3/AP1/p300 complex. The TGFβ-stimulated spatiotemporal dynamics of YAP1 are abrogated in many cancer cells. These results identify a new pathway that integrates TGFβ signals and the Hippo pathway (TGFβ→TAK1→LATS1/2→YAP1 cascade) with a novel dynamic nuclear role for p-YAP1.

Cellular zinc deficiency inhibits the mineralized nodule formation and downregulates bone-specific gene expression in osteoblastic MC3T3-E1 cells

  • Cho, Young-Eun;Kwun, In-Sook
    • Journal of Nutrition and Health
    • /
    • 제51권5호
    • /
    • pp.379-385
    • /
    • 2018
  • Purpose: Zinc (Zn) is an essential trace element for bone mineralization and osteoblast function. We examined the effects of Zn deficiency on osteoblast differentiation and mineralization in MC3T3-E1 cells. Methods: Osteoblastic MC3T3-E1 cells were cultured at concentration of 1 to $15{\mu}M$ $ZnCl_2$ (Zn- or Zn+) for 5, 15 and 25 days up to the calcification period. Extracellular matrix mineralization was detected by staining Ca and P deposits using Alizarin Red and von Kossa stain respectively, and alkaline phosphatase (ALP) activity was detected by ALP staining and colorimetric method. Results: Extracellular matrix mineralization was decreased in Zn deficiency over 5, 15, and 25 days. Similarly, staining of ALP activity as the sign of an osteoblast differentiation, was also decreased by Zn deficiency over the same period. Interestingly, the gene expression of bone-related markers (ALP, PTHR; parathyroid hormone receptor, OPN; osteopontin, OC; osteocalcin and COLI; collagen type I), and bone-specific transcription factor Runx2 were downregulated by Zn deficiency for 5 or 15 days, however, this was restored at 25 days. Conclusion: Our data suggests that Zn deficiency inhibits osteoblast differentiation by retarding bone marker gene expression and also inhibits bone mineralization by decreasing Ca/P deposition as well as ALP activity.

Prognostically Significant Fusion Oncogenes in Pakistani Patients with Adult Acute Lymphoblastic Leukemia and their Association with Disease Biology and Outcome

  • Sabir, Noreen;Iqbal, Zafar;Aleem, Aamer;Awan, Tashfeen;Naeem, Tahir;Asad, Sultan;Tahir, Ammara H;Absar, Muhammad;Hasanato, Rana MW;Basit, Sulman;Chishti, Muhammad Azhar;Ul-Haque, Muhammad Faiyaz;Khalid, Ahmad Muktar;Sabar, Muhammad Farooq;Rasool, Mahmood;Karim, Sajjad;Khan, Mahwish;Samreen, Baila;Akram, Afia M;Siddiqi, Muhammad Hassan;Shahzadi, Saba;Shahbaz, Sana;Ali, Agha Shabbir
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권7호
    • /
    • pp.3349-3355
    • /
    • 2012
  • Background and objectives: Chromosomal abnormalities play an important role in genesis of acute lymphoblastic leukemia (ALL) and have prognostic implications. Five major risk stratifying fusion genes in ALL are BCR-ABL, MLL-AF4, ETV6-RUNX11, E2A-PBX1 and SIL-TAL1. This work aimed to detect common chromosomal translocations and associated fusion oncogenes in adult ALL patients and study their relationship with clinical features and treatment outcome. Methods: We studied fusion oncogenes in 104 adult ALL patients using RT-PCR and interphase-FISH at diagnosis and their association with clinical characteristics and treatment outcome. Results: Five most common fusion genes i.e. BCR-ABL (t 9; 22), TCF3-PBX1 (t 1; 19), ETV6-RUNX1 (t 12; 21), MLL-AF4 (t 4; 11) and SIL-TAL1 (Del 1p32) were found in 82/104 (79%) patients. TCF3-PBX1 fusion gene was associated with lymphadenopathy, SIL-TAL1 positive patients had frequent organomegaly and usually presented with a platelets count of less than $50{\times}10^9/l$. Survival of patients with fusion gene ETV6-RUNX1 was better when compared to patients harboring other genes. MLL-AF4 and BCR-ABL positivity characterized a subset of adult ALL patients with aggressive clinical behaviour and a poor outcome. Conclusions: This is the first study from Pakistan which investigated the frequency of5 fusion oncogenes in adult ALL patients, and their association with clinical features, treatment response and outcome. Frequencies of some of the oncogenes were different from those reported elsewhere and they appear to be associated with distinct clinical characteristics and treatment outcome. This information will help in the prognostic stratification and risk adapted management of adult ALL patients.

풀무치 에탄올 추출물이 MG-63 조골세포 분화에 미치는 영향 (Osteoblastogenic Activity of Locusta migratoria Ethanol Extracts on Pre-Osteoblastic MG-63 Cells)

  • 백민희;서민철;이준하;김인우;김미애;황재삼
    • 생명과학회지
    • /
    • 제28권12호
    • /
    • pp.1448-1454
    • /
    • 2018
  • 최근 들어 곤충을 식품 및 바이오 소재로 이용한 연구가 활발히 진행되고 있다. 그러나 곤충을 이용한 조골세포 활성 및 분화에 따른 골 형성 촉진 효과에 대한 연구는 아직 미흡한 실정이다. 뿐만 아니라 풀무치를 이용한 기능성 연구는 거의 이루어지지 않고 있다. 따라서 본 연구에서는 골 형성 촉진 효능을 가진 새로운 천연물 소재 개발을 위해 풀무치 추출물의 MG-63 조골세포의 분화 촉진 효과를 연구하였다. 조골세포에서 풀무치 추출물의 독성 및 증식 효과를 평가하기 위하여 MTS assay를 진행한 결과, $1,000{\mu}g/ml$ 농도까지 세포 독성이 나타나지 않았으며, 48시간 배양했을 때 $500-1,000{\mu}g/ml$ 농도에서 105%와 116%의 세포 증식 효능을 확인 하였다. 풀무치 추출물이 조골세포 분화에 미치는 영향을 확인하기 위하여 3일 및 5일간 풀무치 추출물을 MG-63 조골세포에 처리한 후 ALP 활성을 측정하였다. 그 결과 $100{\mu}g/ml$ 농도에서 positive control로 사용한 조골세포 분화배지(DM)군과 유사한 정도로 분화가 증가하였으며 500 및 $1,000{\mu}g/ml$ 농도에서는 2-3배까지 조골세포 분화가 촉진되었다. 이 결과는 ALP staining에서도 유사하게 나타났다. mRNA 발현량의 변화를 측정한 결과, Alpl과 Runx2 유전자 발현량이 증가하였고, 단백질 발현량을 측정했을 때에도 유사한 결과를 확인하였다. 이를 통해 ALP와 Runx2 유전자 및 단백질 발현에 의해서 ALP 활성이 증가하고 조골세포 분화가 촉진되었을 것으로 판단되며, 풀무치 추출물을 이용한 골 형성 촉진에 따른 골다공증 예방 및 치료 기능성 소재 개발에 대한 가능성을 확인하였다.

Comparative evaluation of the biological properties of fibrin for bone regeneration

  • Oh, Joung-Hwan;Kim, Hye-Jin;Kim, Tae-Il;Woo, Kyung Mi
    • BMB Reports
    • /
    • 제47권2호
    • /
    • pp.110-114
    • /
    • 2014
  • Fibrin is a natural provisional matrix found in wound healing, while type I collagen is a major organic component of bone matrix. Despite the frequent use of fibrin and type I collagen in bone regenerative approaches, their comparative efficacies have not yet been evaluated. In the present study, we compared the effects of fibrin and collagen on the proliferation and differentiation of osteoblasts and protein adsorption. Compared to collagen, fibrin adsorbed approximately 6.7 times more serum fibronectin. Moreover, fibrin allowed the proliferation of larger MC3T3-E1 pre-osteoblasts, especially at a low cell density. Fibrin promoted osteoblast differentiation at higher levels than collagen, as confirmed by Runx2 expression and transcriptional activity, alkaline phosphatase activity, and calcium deposition. The results of the present study suggest that fibrin is superior to collagen in the support of bone regeneration.