Effect of Fermented Benincasa hispida cong. Extract on Promotion of Osteoblast Differentiation and Inhibition of Osteoclast Generation |
Choi, Ye-Eun
(Haram Central Research Institute)
Yang, Jung-Mo (Haram Central Research Institute) Yoo, Hee-Won (Haram Central Research Institute) Cho, Ju-Hyun (Haram Central Research Institute) |
1 | Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., Kishimoto, T., Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 89, 755-764 (1997). DOI |
2 | Poulsen, R.C., Kruger, M.C., Soy phytoestrogens: impact on postmenopausal bone loss and mechanisms of action. Nutr. Rev., 66, 359-374 (2008). DOI |
3 | Ming, L.G., Chen, K.M., Xian, C.J., Functions and action mechanisms of flavonoids genistein and icariin in regulating bone remodeling. J. Cell. Physiol., 228, 513-521 (2013). DOI |
4 | Teitelbaum, S.L., Bone resorption by osteoclasts. Science, 289, 1504-1508 (2000). DOI |
5 | Ross, F.P., M-CSF, c-Fms, and signaling in osteoclasts and their precursors. Ann. N. Y. Acad. Sci., 1068, 110-116 (2006). DOI |
6 | Uchiyama, S., Yamaguchi, M., Genistein and zinc synergistically enhance gene expression and mineralization in osteoblastic MC3T3-E1 cells. Int. J. Mol. Med., 19, 213-220 (2007). |
7 | Lee, S.H., Kim, J.K., Jang, H.D., Genistein inhibits osteoclastic differentiation of RAW 264.7 cells via regulation of ROS production and scavenging. Int. J. Mol. Sci., 15, 10605-10621 (2014). DOI |
8 | Li, B., Yu, S., Genistein prevents bone resorption diseases by inhibiting bone resorption and stimulating bone formation. Biol. Pharm. Bull., 26(6), 780-786 (2003). DOI |
9 | Blair, H.C., Larrouture, Q.C., Li, Y., Lin, H., Beer-Stoltz, D., Liu, L., Nelson, D.J., Osteoblast differentiation and bone matrix formation in vivo and in vitro. Tissue Eng. Part B Rev., 23, 268-280 (2017). DOI |
10 | Zhu, L., Tang, Y., Li, X.Y., Keller, E.T., Yang, J., Cho, J.S., Weiss, S.J., Osteoclast-mediated bone resorption is controlled by a compensatory network of secreted and membrane-tethered metalloproteinases. Sci. Transl. Med., 12, eaaw6143 (2020). DOI |
11 | Lee, K.H., Choi, H.R., Kim, C.H., Anti-angiogenic effect of the seed extract of Benincasa hispida Cogniaux. J. Ethnopharmacol., 97, 509-513 (2005). DOI |
12 | Papachroni, K.K., Karatzas, D.N., Papavassiliou, K.A., Basdra, E.K., Papavassiliou, A.G., Mechanotransduction in osteoblast regulation and bone disease. Trends Mol. Med., 15, 208-216 (2009). DOI |
13 | Charles, J.F., Aliprantis, A.O., Osteoclasts: more than 'bone eaters'. Trends Mol. Med., 20, 449-459 (2014). DOI |
14 | Mohammad, N.A., Anwar, F., Mehmood, T., Hamid, A.A., Muhammad, K., Saari, N., Phenolic compounds, tocochromanols profile and antioxidant properties of winter melon [Benincasa hispida (Thunb.) Cogn.] seed oils. J. Food Meas. Charact., 13, 940-948 (2019). DOI |
15 | Moon, C.J., (2006). Coloured illustration for discrimination of herbal medicine IV. Korea Food & Drug Administration p. 38. |
16 | Sozen, T., Ozisik, L., Basaran, N.C., An overview and management of osteoporosis. Eur. J. Rheumatol., 4, 46 (2017). DOI |
17 | Nanjing University of Chinese Medicine, Dictionary of Traditional Chinese Medicine, Shanghai Science and Technology Press, 2006. |
18 | Sew, C.C., Zaini, N.A.M., Anwar, F., Hamid, A.A., Saari, N., Nutritional composition and oil fatty acids of kundur [Benincasa hispida (Thunb.) Cogn.] seed. Pak. J. Bot., 42, 3247-3255 (2010). |
19 | Frost, H.M., Dynamics of bone remodeling. Bone biodynamics, 315-334 (1964). |
20 | Feng, X., McDonald, J.M., Disorders of bone remodeling. Annu. Rev. Pathol., 6, 121 (2011). DOI |
21 | Rachchh, M.A., Jain, S.M. Gastroprotective effect of Benincasa hispida fruit extract. Indian J. Pharmacol., 40, 271 (2008). DOI |
22 | Shetty, B.V., Arjuman, A., Jorapur, A., Samanth, R., Yadav, S. K., Valliammai, N., Rao, G. M., Effect of extract of Benincasa hispida on oxidative stress in rats with indomethacin induced gastric ulcers. Indian J. Pharmacol., 52, 178-182 (2008). |
23 | Moon, M.K., Kang, D.G., Lee, Y.J., Kim, J.S., Lee, H.S., Effect of Benincasa hispida Cogniaux on high glucoseinduced vascular inflammation of human umbilical vein endothelial cells. Vasc. Pharmacol., 50, 116-122 (2009). DOI |
24 | Sudo, H., Kodama, H.A., Amagai, Y., Yamamoto, S., Kasai, S., In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J. Cell Biol., 96, 191-198 (1983). DOI |
25 | Mandana, B., Russly, A.R., Farah, S.T., Noranizan, M.A., Zaidul, I.S., Ali, G., Antioxidant activity of winter melon (Benincasa hispida) seeds using conventional Soxhlet extraction technique. Int. Food Res. J., 19, 229-234 (2012). |
26 | Perkins, C., Siddiqui, S., Puri, M., Demain, A.L., (2016). Biotechnological applications of microbial bioconversions. Crit. Rev. Biotechnol., 36, 1050-1065. DOI |
27 | Adler, C.P., Bone diseases: macroscopic, histological, and radiological diagnosis of structural changes in the skeleton. Springer Science & Business Media (2013). |
28 | Moon, K., Lee, S., Cha, J., Bacillus subtilis fermentation of Malva verticillata leaves enhances antioxidant activity and osteoblast differentiation. Foods, 9, 671 (2020). DOI |
29 | Kiran, E.U., Trzcinski, A.P., Ng, W.J., Liu, Y., Bioconversion of food waste to energy: A review. Fuel, 134, 389-399 (2014). DOI |
30 | Lim, S.J., Effects of fractions of Benincasa hispida on antioxidative status in streptozotocin induced diabetic rats. J. Nutr. Health., 40, 295-302 (2007). |
31 | Sanchez, S., Demain, A.L., Enzymes and bioconversions of industrial, pharmaceutical, and biotechnological significance. Org. Process Res. Dev., 15, 224-230 (2011). DOI |
32 | Long, F., Building strong bones: molecular regulation of the osteoblast lineage. Nat. Rev. Mol. Cell Biol., 13, 27-38 (2012). DOI |
33 | Wang, D., Christensen, K., Chawla, K., Xiao, G., Krebsbach, P. H., Franceschi, R.T., Isolation and characterization of MC3T3?E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J. Bone Miner. Res., 14, 893-903 (1999). DOI |
34 | Golub, E.E., Boesze-Battaglia, K., The role of alkaline phosphatase in mineralization. Curr. Opin. Orthop., 18, 444-448 (2007). DOI |
35 | Stein, G.S., Lian, J.B., Van Wijnen, A.J., Stein, J.L., Montecino, M., Javed, A., Pockwinse, S.M., Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene, 23, 4315-4329 (2004). DOI |
36 | Long, F., Building strong bones: molecular regulation of the osteoblast lineage. Nat. Rev. Mol. Cell Biol., 13, 27-38 (2012). DOI |
37 | Gronthos, S., Zannettino, A.C., Graves, S.E., Ohta, S., Hay, S.J., Simmons, P.J., Differential cell surface expression of the STRO-1 and alkaline phosphatase antigens on discrete developmental stages in primary cultures of human bone cells. J. Bone Miner. Res., 14, 47-56 (1999). DOI |
38 | Jensen, E.D., Gopalakrishnan, R., Westendorf, J.J., Regulation of gene expression in osteoblasts. Biofactors, 36, 25-32 (2010). |
39 | Abdi, F., Alimoradi, Z., Haqi, P., Mahdizad, F., Effects of phytoestrogens on bone mineral density during the menopause transition: a systematic review of randomized, controlled trials. Climacteric, 19, 535-545 (2016). DOI |
40 | Gronthos, S., Zannettino, A.C., Graves, S.E., Ohta, S., Hay, S.J., Simmons, P.J., Differential cell surface expression of the STRO-1 and alkaline phosphatase antigens on discrete developmental stages in primary cultures of human bone cells. J. Bone Miner. Res., 14, 47-56 (1999). DOI |