Browse > Article
http://dx.doi.org/10.13103/JFHS.2022.37.5.364

Effect of Fermented Benincasa hispida cong. Extract on Promotion of Osteoblast Differentiation and Inhibition of Osteoclast Generation  

Choi, Ye-Eun (Haram Central Research Institute)
Yang, Jung-Mo (Haram Central Research Institute)
Yoo, Hee-Won (Haram Central Research Institute)
Cho, Ju-Hyun (Haram Central Research Institute)
Publication Information
Journal of Food Hygiene and Safety / v.37, no.5, 2022 , pp. 364-371 More about this Journal
Abstract
The bones of the human body support the structures of the body and provide protection for a person's internal organs. Bone metabolic diseases are on the rise due to a significant increase in life expectancy over a short period of time. Therefore, we investigated the osteoblast differentiation promoting and osteoclastogenesis inhibitory activities of fermented Benincasa hispida cong. (HR1901-BS, HR1901-BSaf). We evaluated the alkaline phosphatase (ALP) activity of MC3T3-E1 mouse calvarial-derived osteoblasts. We also evaluated expression of ALP, osteocalcin (OCN), and runt-related transcription factor 2 (Runx2), which regulate osteoblast differentiation. To assess effects on osteoclast formation, tartrate-resistant acid phosphatase (TRAP) activity in RAW264.7 cells was analyzed. ALP activity increased by 121-136% and 140-156%, respectively in the presence of HR1901-BS and HR1901-BSaf. Expression of osteoblast differentiation factor also increased significantly. We also confirmed that HR1901-BS and HR1901-BSaf decreased TRAP activity in osteoclasts by 35-47% and 23-39%, respectively. Our results showed that fermented Benincasa hispida cong. (HR1901-BS, HR1901-BSaf) increase bone mineralization and osteoblast differentiation activity in MC3T3-E1 cells, and inhibit bone resorption activity in RAW264.7 cells. In conclusion, fermented Benincasa hispida cong. (HR1901-BS, HR1901-BSaf) can be used as an effective natural resource for preventing and treating bone-related diseases.
Keywords
Benincasa hispida; Fermentation; Osteoblast; Osteoclast;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., Kishimoto, T., Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 89, 755-764 (1997).   DOI
2 Poulsen, R.C., Kruger, M.C., Soy phytoestrogens: impact on postmenopausal bone loss and mechanisms of action. Nutr. Rev., 66, 359-374 (2008).   DOI
3 Ming, L.G., Chen, K.M., Xian, C.J., Functions and action mechanisms of flavonoids genistein and icariin in regulating bone remodeling. J. Cell. Physiol., 228, 513-521 (2013).   DOI
4 Teitelbaum, S.L., Bone resorption by osteoclasts. Science, 289, 1504-1508 (2000).   DOI
5 Ross, F.P., M-CSF, c-Fms, and signaling in osteoclasts and their precursors. Ann. N. Y. Acad. Sci., 1068, 110-116 (2006).   DOI
6 Uchiyama, S., Yamaguchi, M., Genistein and zinc synergistically enhance gene expression and mineralization in osteoblastic MC3T3-E1 cells. Int. J. Mol. Med., 19, 213-220 (2007).
7 Lee, S.H., Kim, J.K., Jang, H.D., Genistein inhibits osteoclastic differentiation of RAW 264.7 cells via regulation of ROS production and scavenging. Int. J. Mol. Sci., 15, 10605-10621 (2014).   DOI
8 Li, B., Yu, S., Genistein prevents bone resorption diseases by inhibiting bone resorption and stimulating bone formation. Biol. Pharm. Bull., 26(6), 780-786 (2003).   DOI
9 Blair, H.C., Larrouture, Q.C., Li, Y., Lin, H., Beer-Stoltz, D., Liu, L., Nelson, D.J., Osteoblast differentiation and bone matrix formation in vivo and in vitro. Tissue Eng. Part B Rev., 23, 268-280 (2017).   DOI
10 Zhu, L., Tang, Y., Li, X.Y., Keller, E.T., Yang, J., Cho, J.S., Weiss, S.J., Osteoclast-mediated bone resorption is controlled by a compensatory network of secreted and membrane-tethered metalloproteinases. Sci. Transl. Med., 12, eaaw6143 (2020).   DOI
11 Lee, K.H., Choi, H.R., Kim, C.H., Anti-angiogenic effect of the seed extract of Benincasa hispida Cogniaux. J. Ethnopharmacol., 97, 509-513 (2005).   DOI
12 Papachroni, K.K., Karatzas, D.N., Papavassiliou, K.A., Basdra, E.K., Papavassiliou, A.G., Mechanotransduction in osteoblast regulation and bone disease. Trends Mol. Med., 15, 208-216 (2009).   DOI
13 Charles, J.F., Aliprantis, A.O., Osteoclasts: more than 'bone eaters'. Trends Mol. Med., 20, 449-459 (2014).   DOI
14 Mohammad, N.A., Anwar, F., Mehmood, T., Hamid, A.A., Muhammad, K., Saari, N., Phenolic compounds, tocochromanols profile and antioxidant properties of winter melon [Benincasa hispida (Thunb.) Cogn.] seed oils. J. Food Meas. Charact., 13, 940-948 (2019).   DOI
15 Moon, C.J., (2006). Coloured illustration for discrimination of herbal medicine IV. Korea Food & Drug Administration p. 38.
16 Sozen, T., Ozisik, L., Basaran, N.C., An overview and management of osteoporosis. Eur. J. Rheumatol., 4, 46 (2017).   DOI
17 Nanjing University of Chinese Medicine, Dictionary of Traditional Chinese Medicine, Shanghai Science and Technology Press, 2006.
18 Sew, C.C., Zaini, N.A.M., Anwar, F., Hamid, A.A., Saari, N., Nutritional composition and oil fatty acids of kundur [Benincasa hispida (Thunb.) Cogn.] seed. Pak. J. Bot., 42, 3247-3255 (2010).
19 Frost, H.M., Dynamics of bone remodeling. Bone biodynamics, 315-334 (1964).
20 Feng, X., McDonald, J.M., Disorders of bone remodeling. Annu. Rev. Pathol., 6, 121 (2011).   DOI
21 Rachchh, M.A., Jain, S.M. Gastroprotective effect of Benincasa hispida fruit extract. Indian J. Pharmacol., 40, 271 (2008).   DOI
22 Shetty, B.V., Arjuman, A., Jorapur, A., Samanth, R., Yadav, S. K., Valliammai, N., Rao, G. M., Effect of extract of Benincasa hispida on oxidative stress in rats with indomethacin induced gastric ulcers. Indian J. Pharmacol., 52, 178-182 (2008).
23 Moon, M.K., Kang, D.G., Lee, Y.J., Kim, J.S., Lee, H.S., Effect of Benincasa hispida Cogniaux on high glucoseinduced vascular inflammation of human umbilical vein endothelial cells. Vasc. Pharmacol., 50, 116-122 (2009).   DOI
24 Sudo, H., Kodama, H.A., Amagai, Y., Yamamoto, S., Kasai, S., In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J. Cell Biol., 96, 191-198 (1983).   DOI
25 Mandana, B., Russly, A.R., Farah, S.T., Noranizan, M.A., Zaidul, I.S., Ali, G., Antioxidant activity of winter melon (Benincasa hispida) seeds using conventional Soxhlet extraction technique. Int. Food Res. J., 19, 229-234 (2012).
26 Perkins, C., Siddiqui, S., Puri, M., Demain, A.L., (2016). Biotechnological applications of microbial bioconversions. Crit. Rev. Biotechnol., 36, 1050-1065.   DOI
27 Adler, C.P., Bone diseases: macroscopic, histological, and radiological diagnosis of structural changes in the skeleton. Springer Science & Business Media (2013).
28 Moon, K., Lee, S., Cha, J., Bacillus subtilis fermentation of Malva verticillata leaves enhances antioxidant activity and osteoblast differentiation. Foods, 9, 671 (2020).   DOI
29 Kiran, E.U., Trzcinski, A.P., Ng, W.J., Liu, Y., Bioconversion of food waste to energy: A review. Fuel, 134, 389-399 (2014).   DOI
30 Lim, S.J., Effects of fractions of Benincasa hispida on antioxidative status in streptozotocin induced diabetic rats. J. Nutr. Health., 40, 295-302 (2007).
31 Sanchez, S., Demain, A.L., Enzymes and bioconversions of industrial, pharmaceutical, and biotechnological significance. Org. Process Res. Dev., 15, 224-230 (2011).   DOI
32 Long, F., Building strong bones: molecular regulation of the osteoblast lineage. Nat. Rev. Mol. Cell Biol., 13, 27-38 (2012).   DOI
33 Wang, D., Christensen, K., Chawla, K., Xiao, G., Krebsbach, P. H., Franceschi, R.T., Isolation and characterization of MC3T3?E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J. Bone Miner. Res., 14, 893-903 (1999).   DOI
34 Golub, E.E., Boesze-Battaglia, K., The role of alkaline phosphatase in mineralization. Curr. Opin. Orthop., 18, 444-448 (2007).   DOI
35 Stein, G.S., Lian, J.B., Van Wijnen, A.J., Stein, J.L., Montecino, M., Javed, A., Pockwinse, S.M., Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene, 23, 4315-4329 (2004).   DOI
36 Long, F., Building strong bones: molecular regulation of the osteoblast lineage. Nat. Rev. Mol. Cell Biol., 13, 27-38 (2012).   DOI
37 Gronthos, S., Zannettino, A.C., Graves, S.E., Ohta, S., Hay, S.J., Simmons, P.J., Differential cell surface expression of the STRO-1 and alkaline phosphatase antigens on discrete developmental stages in primary cultures of human bone cells. J. Bone Miner. Res., 14, 47-56 (1999).   DOI
38 Jensen, E.D., Gopalakrishnan, R., Westendorf, J.J., Regulation of gene expression in osteoblasts. Biofactors, 36, 25-32 (2010).
39 Abdi, F., Alimoradi, Z., Haqi, P., Mahdizad, F., Effects of phytoestrogens on bone mineral density during the menopause transition: a systematic review of randomized, controlled trials. Climacteric, 19, 535-545 (2016).   DOI
40 Gronthos, S., Zannettino, A.C., Graves, S.E., Ohta, S., Hay, S.J., Simmons, P.J., Differential cell surface expression of the STRO-1 and alkaline phosphatase antigens on discrete developmental stages in primary cultures of human bone cells. J. Bone Miner. Res., 14, 47-56 (1999).   DOI