Comparative evaluation of the biological properties of fibrin for bone regeneration |
Oh, Joung-Hwan
(Department of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University)
Kim, Hye-Jin (Department of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University) Kim, Tae-Il (Department of Periodontology, School of Dentistry, Seoul National University) Woo, Kyung Mi (Department of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University) |
1 | Lynch, M. P., Stein, J. L., Stein, G. S. and Lian, J. B. (1995) The influence of type I collagen on the development and maintenance of the osteoblast phenotype in primary and passaged rat calvarial osteoblasts: modification of expression of genes supporting cell growth, adhesion, and extracellular matrix mineralization. Exp. Cell. Res. 216, 35-45. DOI ScienceOn |
2 | Mizuno, M., Fujisawa, R. and Kuboki, Y. (2000) Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagen-alpha2beta1 integrin interaction. J. Cell. Physiol. 184, 207-213. DOI |
3 | Moursi, A. M., Globus, R. K. and Damsky, C. H. (1997) Interactions between integrin receptors and fibronectin are required for calvarial osteoblast differentiation in vitro. J. Cell. Sci. 110, 2187-2196. |
4 | Woo, K. M., Jun, J. H., Chen, V. J., Seo, J., Baek, J. H., Ryoo, H. M., Kim, G. S., Somerman, M. J. and Ma, P. X. (2007) Nano-fibrous scaffolding promotes osteoblast differentiation and biomineralization. Biomaterials 28, 335-343. DOI ScienceOn |
5 | Knight, C. G., Morton, L. F., Peachey, A. R., Tuckwell, D. S., Farndale, R. W. and Barnes, M. J. (2000) The collagen- binding A-domains of integrins alpha(1)beta(1) and alpha(2)beta(1) recognize the same specific amino acid sequence, GFOGER, in native (triple-helical) collagens. J. Biol. Chem. 275, 35-40. DOI ScienceOn |
6 | Oh, J. H., Seo, J., Yoon, W. J., Cho, J. Y., Baek, J. H., Ryoo, H. M. and Woo, K. M. (2011) Suppression of Runx2 protein degradation by fibrous engineered matrix. Biomaterials 32, 5826-5836. DOI ScienceOn |
7 | Li, W. J., Laurencin, C. T., Caterson, E. J., Tuan, R. S. and Ko, F. K. (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J. Biomed. Mater. Res. 60, 613-621. DOI ScienceOn |
8 | Ma, P. X. (2008) Biomimetic materials for tissue engineering. Adv. Drug. Deliv. Rev. 60, 184-198. DOI ScienceOn |
9 | Ahmed, T. A., Dare, E. V. and Hincke, M. (2008) Fibrin: a versatile scaffold for tissue engineering applications. Tissue. Eng. Part B. Rev. 14, 199-215. DOI ScienceOn |
10 | Laurens, N., Koolwijk, P. and de Maat, M. P. (2006) Fibrin structure and wound healing. J. Thromb. Haemost. 4, 932-939. DOI ScienceOn |
11 | Mosesson, M. W. (2005) Fibrinogen and fibrin structure and functions. J. Thromb. Haemost. 3, 1894-1904. DOI ScienceOn |
12 | Song, S. J., Pagel, C. N., Campbell, T. M., Pike, R. N. and Mackie, E. J. (2005) The role of protease-activated receptor- 1 in bone healing. Am. J. Pathol. 166, 857-868. DOI ScienceOn |
13 | Karp, J. M., Sarraf, F., Shoichet, M. S. and Davies, J. E. (2004) Fibrin-filled scaffolds for bone-tissue engineering: An in vivo study. J. Biomed. Mater. Res. A. 71, 162-171. |
14 | Osathanon, T., Linnes, M. L., Rajachar, R. M., Ratner, B. D., Somerman, M. J. and Giachelli, C. M. (2008) Microporous nanofibrous fibrin-based scaffolds for bone tissue engineering. Biomaterials 29, 4091-4099. DOI ScienceOn |
15 | Oh, J. H., Kim, H. J., Kim, T. I., Baek, J. H., Ryoo, H. M. and Woo, K. M. (2012) The effects of the modulation of the fibronectin-binding capacity of fibrin by thrombin on osteoblast differentiation. Biomaterials 33, 4089-4099. DOI ScienceOn |
16 | Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., Shimizu, Y., Bronson, R. T., Gao, Y. H., Inada, M., Sato, M., Okamoto, R., Kitamura, Y., Yoshiki, S. and Kishimoto, T. (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89, 755-764. DOI ScienceOn |
17 | Breen, A., O'Brien, T. and Pandit, A. (2009) Fibrin as a delivery system for therapeutic drugs and biomolecules. Tissue. Eng. Part B-Re. 15, 201-214. |
18 | Wilson, C. J., Clegg, R. E., Leavesley, D. I. and Pearcy, M. J. (2005) Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Eng. 11, 1-18. DOI ScienceOn |
19 | Marie, P. J. (2013) Targeting integrins to promote bone formation and repair. Nature reviews. Endocrinology 9, 288-295. DOI ScienceOn |
20 | Flanagan, T. C., Cornelissen, C., Koch, S., Tschoeke, B., Sachweh, J. S., Schmitz-Rode, T. and Jockenhoevel, S. (2007) The in vitro development of autologous fibrin-based tissue-engineered heart valves through optimised dynamic conditioning. Biomaterials 28, 3388-3397. DOI ScienceOn |
21 | Phillips, J. E., Hutmacher, D. W., Guldberg, R. E. and Garcia, A. J. (2006) Mineralization capacity of Runx2/ Cbfa1-genetically engineered fibroblasts is scaffold dependent. Biomaterials 27, 5535-5545. DOI ScienceOn |
22 | Alston, S. M., Solen, K. A., Sukavaneshvar, S. and Mohammad, S. F. (2008) In vivo efficacy of a new autologous fibrin sealant. J. Surg. Res. 146, 143-148. DOI ScienceOn |
23 | Xiao, G., Gopalakrishnan, R., Jiang, D., Reith, E., Benson, M. D. and Franceschi, R. T. (2002) Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast- specific gene expression and differentiation in MC3T3-E1 cells. J. Bone Miner. Res. 17, 101-110. DOI ScienceOn |
24 | Bensaid, W., Triffitt, J. T., Blanchat, C., Oudina, K., Sedel, L. and Petite, H. (2003) A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials 24, 2497-2502. DOI ScienceOn |