Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.2.156

Comparative evaluation of the biological properties of fibrin for bone regeneration  

Oh, Joung-Hwan (Department of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University)
Kim, Hye-Jin (Department of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University)
Kim, Tae-Il (Department of Periodontology, School of Dentistry, Seoul National University)
Woo, Kyung Mi (Department of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University)
Publication Information
BMB Reports / v.47, no.2, 2014 , pp. 110-114 More about this Journal
Abstract
Fibrin is a natural provisional matrix found in wound healing, while type I collagen is a major organic component of bone matrix. Despite the frequent use of fibrin and type I collagen in bone regenerative approaches, their comparative efficacies have not yet been evaluated. In the present study, we compared the effects of fibrin and collagen on the proliferation and differentiation of osteoblasts and protein adsorption. Compared to collagen, fibrin adsorbed approximately 6.7 times more serum fibronectin. Moreover, fibrin allowed the proliferation of larger MC3T3-E1 pre-osteoblasts, especially at a low cell density. Fibrin promoted osteoblast differentiation at higher levels than collagen, as confirmed by Runx2 expression and transcriptional activity, alkaline phosphatase activity, and calcium deposition. The results of the present study suggest that fibrin is superior to collagen in the support of bone regeneration.
Keywords
Collagen; Fibrin; Fibronectin; Osteoblast; Protein adsorption;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lynch, M. P., Stein, J. L., Stein, G. S. and Lian, J. B. (1995) The influence of type I collagen on the development and maintenance of the osteoblast phenotype in primary and passaged rat calvarial osteoblasts: modification of expression of genes supporting cell growth, adhesion, and extracellular matrix mineralization. Exp. Cell. Res. 216, 35-45.   DOI   ScienceOn
2 Mizuno, M., Fujisawa, R. and Kuboki, Y. (2000) Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagen-alpha2beta1 integrin interaction. J. Cell. Physiol. 184, 207-213.   DOI
3 Moursi, A. M., Globus, R. K. and Damsky, C. H. (1997) Interactions between integrin receptors and fibronectin are required for calvarial osteoblast differentiation in vitro. J. Cell. Sci. 110, 2187-2196.
4 Woo, K. M., Jun, J. H., Chen, V. J., Seo, J., Baek, J. H., Ryoo, H. M., Kim, G. S., Somerman, M. J. and Ma, P. X. (2007) Nano-fibrous scaffolding promotes osteoblast differentiation and biomineralization. Biomaterials 28, 335-343.   DOI   ScienceOn
5 Knight, C. G., Morton, L. F., Peachey, A. R., Tuckwell, D. S., Farndale, R. W. and Barnes, M. J. (2000) The collagen- binding A-domains of integrins alpha(1)beta(1) and alpha(2)beta(1) recognize the same specific amino acid sequence, GFOGER, in native (triple-helical) collagens. J. Biol. Chem. 275, 35-40.   DOI   ScienceOn
6 Oh, J. H., Seo, J., Yoon, W. J., Cho, J. Y., Baek, J. H., Ryoo, H. M. and Woo, K. M. (2011) Suppression of Runx2 protein degradation by fibrous engineered matrix. Biomaterials 32, 5826-5836.   DOI   ScienceOn
7 Li, W. J., Laurencin, C. T., Caterson, E. J., Tuan, R. S. and Ko, F. K. (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J. Biomed. Mater. Res. 60, 613-621.   DOI   ScienceOn
8 Ma, P. X. (2008) Biomimetic materials for tissue engineering. Adv. Drug. Deliv. Rev. 60, 184-198.   DOI   ScienceOn
9 Ahmed, T. A., Dare, E. V. and Hincke, M. (2008) Fibrin: a versatile scaffold for tissue engineering applications. Tissue. Eng. Part B. Rev. 14, 199-215.   DOI   ScienceOn
10 Laurens, N., Koolwijk, P. and de Maat, M. P. (2006) Fibrin structure and wound healing. J. Thromb. Haemost. 4, 932-939.   DOI   ScienceOn
11 Mosesson, M. W. (2005) Fibrinogen and fibrin structure and functions. J. Thromb. Haemost. 3, 1894-1904.   DOI   ScienceOn
12 Song, S. J., Pagel, C. N., Campbell, T. M., Pike, R. N. and Mackie, E. J. (2005) The role of protease-activated receptor- 1 in bone healing. Am. J. Pathol. 166, 857-868.   DOI   ScienceOn
13 Karp, J. M., Sarraf, F., Shoichet, M. S. and Davies, J. E. (2004) Fibrin-filled scaffolds for bone-tissue engineering: An in vivo study. J. Biomed. Mater. Res. A. 71, 162-171.
14 Osathanon, T., Linnes, M. L., Rajachar, R. M., Ratner, B. D., Somerman, M. J. and Giachelli, C. M. (2008) Microporous nanofibrous fibrin-based scaffolds for bone tissue engineering. Biomaterials 29, 4091-4099.   DOI   ScienceOn
15 Oh, J. H., Kim, H. J., Kim, T. I., Baek, J. H., Ryoo, H. M. and Woo, K. M. (2012) The effects of the modulation of the fibronectin-binding capacity of fibrin by thrombin on osteoblast differentiation. Biomaterials 33, 4089-4099.   DOI   ScienceOn
16 Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., Shimizu, Y., Bronson, R. T., Gao, Y. H., Inada, M., Sato, M., Okamoto, R., Kitamura, Y., Yoshiki, S. and Kishimoto, T. (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89, 755-764.   DOI   ScienceOn
17 Breen, A., O'Brien, T. and Pandit, A. (2009) Fibrin as a delivery system for therapeutic drugs and biomolecules. Tissue. Eng. Part B-Re. 15, 201-214.
18 Wilson, C. J., Clegg, R. E., Leavesley, D. I. and Pearcy, M. J. (2005) Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Eng. 11, 1-18.   DOI   ScienceOn
19 Marie, P. J. (2013) Targeting integrins to promote bone formation and repair. Nature reviews. Endocrinology 9, 288-295.   DOI   ScienceOn
20 Flanagan, T. C., Cornelissen, C., Koch, S., Tschoeke, B., Sachweh, J. S., Schmitz-Rode, T. and Jockenhoevel, S. (2007) The in vitro development of autologous fibrin-based tissue-engineered heart valves through optimised dynamic conditioning. Biomaterials 28, 3388-3397.   DOI   ScienceOn
21 Phillips, J. E., Hutmacher, D. W., Guldberg, R. E. and Garcia, A. J. (2006) Mineralization capacity of Runx2/ Cbfa1-genetically engineered fibroblasts is scaffold dependent. Biomaterials 27, 5535-5545.   DOI   ScienceOn
22 Alston, S. M., Solen, K. A., Sukavaneshvar, S. and Mohammad, S. F. (2008) In vivo efficacy of a new autologous fibrin sealant. J. Surg. Res. 146, 143-148.   DOI   ScienceOn
23 Xiao, G., Gopalakrishnan, R., Jiang, D., Reith, E., Benson, M. D. and Franceschi, R. T. (2002) Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast- specific gene expression and differentiation in MC3T3-E1 cells. J. Bone Miner. Res. 17, 101-110.   DOI   ScienceOn
24 Bensaid, W., Triffitt, J. T., Blanchat, C., Oudina, K., Sedel, L. and Petite, H. (2003) A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials 24, 2497-2502.   DOI   ScienceOn