• Title/Summary/Keyword: running vehicle

Search Result 683, Processing Time 0.039 seconds

Development of the Roller Rig for 1/5 Scaled Half Railway Vehicle to perform Running Stability Test (철도차량 주행안정성 시험용 축소형 반차체 주행시험기 개발)

  • Shin, Yu-Jeong;You, Won-Hee;Hur, Hyun-Moo;Park, Joon-Hyuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.543-550
    • /
    • 2011
  • The development of railway vehicles such as new mechanism of railway vehicle or design parameters of suspension have been used the application of scaled roller rig to the study of railway vehicle dynamics. In this paper, the critical speed was compared between full scale and 1:5 scale of numerical model. And to verify the simulation results, the critical speed was confirmed using the 1:5 scaled roller rig. According to the results, we expect that the developed roller rig will be used in the study for the dynamic characteristics of railway vehicle.

CONSIDERATIONS CONCERNING IMPROVEMENT OF EMERGENCY EVASION PERFORMANCE

  • Nozaki, H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.187-193
    • /
    • 2006
  • When emergency evasion during running is required, a driver sometimes causes a vehicle to drift, that is, a condition in which the rear wheels skid due to rapid steering. Under such conditions, the vehicle enters a very unstable state and often becomes uncontrollable. An unstable state of the vehicle induced by rapid steering was simulated and the effect of differential steering assistance was examined. Results indicate that, in emergency evasion while cornering and during which the vehicle begins to drift, unstable behavior like spins can be avoided by differential steering assistance and both the stability and control of the vehicle is improved remarkably. In addition, reduction of overshoot during spin evasion by the differential steering assistance has been shown to enable the vehicle to return to a state of stability in a short time in emergency evasion during straight-line running. Moreover, the effectiveness of differential steering assistance during emergency evasion was confirmed using a driving simulator.

Dynamic behaviour of high-sided road vehicles subject to a sudden crosswind gust

  • Xu, Y.L.;Guo, W.H.
    • Wind and Structures
    • /
    • v.6 no.5
    • /
    • pp.325-346
    • /
    • 2003
  • High-sided road vehicles are susceptible to a sharp-edged crosswind gust, which may cause vehicle accidents such as overturning, excessive sideslip, or exaggerated rotation. This paper thus investigates the dynamic behaviour and possible accidents of high-sided road vehicles entering a sharp-edged crosswind gust with road surface roughness and vehicle suspension included. The high-sided road vehicle is modelled as a combination of several rigid bodies connected by a series of springs and dampers in both vertical and lateral directions. The random roughness of road surface is generated from power spectral density functions for various road conditions. The empirical formulae derived from wind tunnel test results are employed to determine aerodynamic forces and moments acting on the vehicle. After the governing equations of motion are established, an extensive computation work is performed to examine the effects of road surface roughness and vehicle suspension on the dynamic behaviour and vehicle accidents. It is demonstrated that for the high-sided road vehicle and wind forces specified in the computation, the accident vehicle speed of the road vehicle running on the road of average condition is relatively smaller than that running on the road of very good condition for a given crosswind gust. The vehicle suspension system should be taken into consideration, and the accident vehicle speed becomes smaller if the vehicle suspension system has softer springs and lighter dampers.

The Passenger Car Equivalence Models for Noise Level of Large Vehicles (대형차 소음환산계수 산정방법)

  • Yu, Wan;Lee, Seung-Ju
    • Journal of the Korean Regional Science Association
    • /
    • v.6 no.1
    • /
    • pp.57-68
    • /
    • 1990
  • The purpose of this study is to develop the models to predict the noise PCE (Passenger Car Equivalence) of large running vehicles through noise prediction models. The noises were measured at the distance of 7.5M, 11.0M, and 14.5M from the noise source with test vehicles running at the speed of 40 Km/h, 60 Km/h, and 80 Km/h while normal traffic were detoured. Total noise levels were measured while vehicles were running at given speeds, Engine noise level was considered as the noise of its idle running at the three vehicle speeds shown above friction noise level was ascertained by moving the vehicle at given speeds without the engin operating. The noise prediction models for each noise source were developed by factors which affect to the each noise level. As a result of this paper, the reduction of total vehicle noise by increasing the distance to the noise source from 10 M to 15 M is as much as that by dropping its speed from 60 Km/h to 40 Km/h. Also, the reduction of PCE of total noise of large vehicle by making the noise source to that by reducing its speed from 80 Km/h to 60 Km/h. Enging noise PCE, which is in range between 65 and 160, is larger than friction noise PCE which is in range 3.5 and 5.5. Engin noise is the main noise of the large vehicles while friction noise is that of the small vehicles. Machine noise for large vehicles, and engin noise for small vehicles should be tightly controlled to reduce the vehicle noise. A low noise engine and tire, and the shape of vehicle body are needed to be developed to reduce noise further.

  • PDF

A Study on Development of Maintenance Skill Training Simulator for Railway Vehicle

  • Jung, NoGeon;Kim, BoSung;Lee, JaeBong;Lee, SangMoon;Koo, KyungWan;Kim, JaeMoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.2
    • /
    • pp.113-116
    • /
    • 2015
  • Generally, in the railway vehicle the driving force of gravity happens by the high-speed running and the repetitive impulse cause the degradation and the malfunction phenomenon shows differently because the durability of each component changes according to the internal and external causes. The maintenance of propulsion control device which is played the very important role as to the stable service of the railway vehicle is greatly important among them. Therefore maintenance training propulsion control device simulator is needed to maximize learning through repetition and improve the maintenance practical skills training. This paper designed the railway vehicle running device with a miniature for the railway vehicle maintenance training and developed a propulsion control device simulator equipped the imitation steering wheel.

Modeling of the Maglev Vehicle Running over an elevated Guideway Using Flexible Multi-body Dynamics Based on the Model Superposition Method (모드중첩법을 이용한 자기부상열차/유연궤도 동적 모델링 연구)

  • Han, Hyung-Suk;Lee, Jong-Min;Kim, Young-Joong;Kim, Dong-Seong;Kim, Sook-Hee;Lee, Jae-Ik
    • Proceedings of the KSR Conference
    • /
    • 2006.11a
    • /
    • pp.229-238
    • /
    • 2006
  • In general, the Maglev vehicle is run over an elevated guideway consisting of steel or concrete structure. Since the running behavior of the vehicle is affected by the flexibility of the guideway, the consideration of the flexibility of guideway is needed for evaluating the dynamics of both the vehicle and guideway. A new method based on flexible multibody dynamics is proposed to model the Maglew vehicle. This method combines the levitation controller, vehicle, and guideway into a coupled model To verify the method, an urban transit is analyzed using the method and discussions are carried out.

  • PDF

A Study on Calculation of Engine Torque for Automotive (자동차의 엔진 토오크 산출에 대한 연구)

  • 나완용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.211-219
    • /
    • 2003
  • The main study experiments to obtain engine torque of the vehicle during performance test of the recent automobile. Torque was measured through the engine dynamometer to produces engine torque of the vehicle but the research method calculated engine torque of the vehicle without the engine dynamometer. The performance of the vehicle receive various running resistance. The study certificates performance of certification before a certification of used vehicle didn't carry out and certificate. This way evaluated on road test and chassis dynamometer The result of the study shows that it is much possible to apply the test. After comparing the engine torque of road driving with that of chassis dynamometer, the results are approximately the same. When rapidly speeded up, the road-load vehicle can pitch in some degrees, which may result in the fluctuations of acceleration, and then affect on the engine torque. Therefore it is confirmed that this method is easier way to measure the performance of vehicles.

A Running Safety Analysis of Railway Vehicle passing through Curve According to Rail Inclination Change (곡선부 통과열차의 레일 경좌 변화에 따른 주행안전성 해석)

  • Son, Myoung-Sun;Eom, Beom-Gyu;Kang, Bu-Byoung;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1922-1928
    • /
    • 2011
  • The rail inclination produces a wider bearing area between the wheel and the rail by moving the wheel rail contact area away from the gauge towards the centre of the railhead, thus improving the wear pattern of the railhead and wheel treads. It is essential to keep the rail inclination within the allowable range to ensure optimum track geometry. Neglecting the rail inclination geometrical parameters in a track quality evaluation can cause safety of railway vehicle and serviceability problems. In this paper, we examined the effect of the rail inclination in general geometry state of the railway track using VI-Rail and analyzed running safety when the railway vehicle passing through curves depending on change of the rail inclination and running speed.

  • PDF

A Study on Lateral Damper for Improving Running Performance of Subway Vehicle (도시철도 전동차 주행성능 향상을 위한 횡댐퍼에 관한 연구)

  • Jeon, Ju-Yun;Hur, Hyun-Moo;Shin, Yu-Jeong;You, Won-Hee;Koo, Jeong-Seo
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1856-1861
    • /
    • 2011
  • As a secondary suspension, the air spring has not good lateral stiffness characteristics. In order to make up for this weak point, lateral damper is used between bogie and carbody. The lateral vibration of carbody can be reduced by the lateral damper. When the damping force of lateral damper becomes worse, the running stability and ride comfort of the railway vehicle go down. Simultaneously the lateral motion of carbody is increased. In this study, the lateral displacement of carbody was studied by the multibody dynamic analysis in accordance with lateral damping force to find the cause of abnormal noise(impact noise) when the vehicle is running. The suitable lateral damping force was reviewed in order not to generate abnormal noise.

  • PDF

Source Separation Technique for Analysis of Internal Noise of Diesel Multiple Unit (디젤 동차의 실내 소음 분석을 위한 음원 분리 기법)

  • Lee Hwa-Soo;Kim Jong-Nyeun
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.789-792
    • /
    • 2005
  • The dominant noise sources of Diesel Multiple Units are powerpack, which is composed of engine, transmission and cooling system, noise and wheel-rail rolling noise. The interior noise of a running vehicle is determined by structure-borne noise and air-borne noise from these noise sources. The contributions of interior noise from each noise source are calculated by air-borne transfer functions and structure-borne transfer functions of noise sources. In this paper, source separation technique is proposed to determine these transfer functions from the results of stationary and running tests of existing vehicle. With this technique, it is possible to get hold of contributions of interior noise from .noise sources of running vehicle. This source separation technique makes it possible to take efficient measures for reduction of interior noise at the early car-development stage.

  • PDF