• Title/Summary/Keyword: ruminal fermentation

Search Result 375, Processing Time 0.022 seconds

Silage Fermentative Quality and Characteristics of Anthocyanin Stability in Anthocyanin-rich Corn (Zea mays L.)

  • Hosoda, Kenji;Eruden, Bayaru;Matsuyama, Hiroki;Shioya, Shigeru
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.4
    • /
    • pp.528-533
    • /
    • 2009
  • The fermentative quality and quantitative change in anthocyanin of anthocyanin-rich corn (Zea mays L.) during storage and in vitro ruminal fermentation were studied. The anthocyanin-rich corn silages in bag silo, drum silo and round bale had good fermentative qualities, such as low pH (5% DM) and butyric acid-free, and its quality was maintained for more than 370 d. The amount of anthocyanin in the anthocyanin-rich corn decreased after ensiling by about 45% (from 3.34 to 1.88 mg/g DM), but stayed constant after day 60. The in vitro incubation of the anthocyanin-rich corn with ruminal fluid revealed little degradation of anthocyanin. These results indicate that the anthocyanin had no negative effect on silage fermentation, and the anthocyanin-rich corn silage is utilizable for practical use as a feedstuff. Our results also demonstrate alteration of the anthocyanin content during storage, and show that anthocyanin-rich corn is a suitable antioxidant source for ruminants because of the high stability of the anthocyanin in ruminal fluid.

Effects of Thymol, Eugenol and Malate on In vitro Rumen Microbial Fermentation

  • Kim, Do-Hyung;Kim, Kyoung-Hoon;Choi, Chang-Won;Hong, Seong-Koo;Seol, Yong-Joo;Kwon, Eung-Gi;Kim, Wan-Young;Nam, In-Sik;Lee, Sung-Sill;Oh, Young-Kyoon
    • Journal of Animal Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.511-520
    • /
    • 2009
  • The purpose of this study was to investigate effects of increased levels of eugenol, thymol and malate on pH and the concentrations of VFA, lactate and ammonia-N during in vitro ruminal incubation. One Hanwoo beef steer (741 kg) fitted with a rumen cannula was used and fed 0.5 kg/day rice straw and 10 kg/day corn-based concentrate (ratio of concentrate to rice straw = 95 : 5 on DM basis). Three different doses of thymol, eugenol and malate were used. Treatments of the experiment were as follows: Treatments of thymol were control (1g D-glucose/40ml), T1 (1g D-glucose + 40 mg thymol/40 ml), T2 (1g D-glucose + 50 mg thymol/40 ml) and T3 (1g D-glucose + 60 mg thymol/40 ml). Treatments of eugenol were control (1g D-glucose/40 ml), E1 (1g D-glucose + 55 mg eugenol/40 ml), E2 (1g D-glucose + 65 mg eugenol/40 ml) and E3 (1g D-glucose + 75 mg eugenol/40 ml). Treatments of malate were control (1g D-glucose/40ml), M1 (1g D-glucose + 25 mg malate/40ml), M2 (1g D-glucose + 50 mg malate/40 ml) and M3 (1g D-glucose + 100 mg malate/40 ml). The results of this study showed that eugenol and thymol have improved stability of the ruminal fermentation by decreasing lactic acid concentration and increasing ruminal pH. However, it inhibited the production of total VFA, acetate and propionate. Malate also improved stability of the ruminal fermentation by decreasing lactic acid concentration and increasing ruminal pH, but it had a very little effect on ruminal lactate concentrations and pH. On the other hand, malate did not decrease the concentrations of total VFA, acetate and propionate. Therefore, at the low ruminal pH expected in high-concentrate diets, thymol, eugenol, and malate are potentially useful in Hanwoo finishing diets. Further studies are necessary for determining the effectiveness of these additives on in vivo rumen fermentation and animal performance in Hanwoo finishing steers.

Effects of Polyurethane Coated Urea Supplement on In vitro Ruminal Fermentation, Ammonia Release Dynamics and Lactating Performance of Holstein Dairy Cows Fed a Steam-flaked Corn-based Diet

  • Xin, H.S.;Schaefer, D.M.;Liu, Q.P.;Axe, D.E.;Meng, Q.X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.4
    • /
    • pp.491-500
    • /
    • 2010
  • Three experiments were conducted to investigate the effects of polyurethane coated urea on in vitro ruminal fermentation, ammonia release dynamics and lactating performance of Holstein dairy cows fed a steam-flaked corn-based diet. In Exp. 1, a dual-flow continuous culture was run to investigate the effect of polyurethane coated urea on nutrient digestibility, rumen fermentation parameters and microbial efficiency. Three treatment diets with isonitrogenous contents (13.0% CP) were prepared: i) feedgrade urea (FGU) diet; ii) polyurethane coated urea (PCU) diet; and iii) isolated soy protein (ISP) diet. Each of the diets consisted of 40% steam-flaked corn meal, 58.5% forages and 1.5% different sources of nitrogen. PCU and FGU diets had significantly lower digestibility of NDF and ADF (p<0.01) than the ISP diet. Nitrogen source had no significant effect (p = 0.62) on CP digestibility. The microbial efficiency (expressed as grams of microbial N/kg organic matter truly digested (OMTD)) in vitro of the PCU diet (13.0 g N/kg OMTD) was significantly higher than the FGU diet (11.3 g N/kg OMTD), but comparable with the ISP diet (14.7 g N/kg OMTD). Exp. 2, an in vitro ruminal fermentation experiment, was conducted to determine the ammonia release dynamics during an 8 h ruminal fermentation. Three treatment diets were based on steam-flaked corn diets commonly fed to lactating cows in China, in which FGU, PCU or soybean meal (SBM) was added to provide 10% of total dietary N. In vitro $NH_3-N$ concentrations were lower (p<0.05) for the PCU diet than the FGU diet, but similar to that for the SBM diet at all time points. In Exp. 3, a lactation trial was performed using 24 lactating Holstein cows to compare the lactating performance and blood urea nitrogen (BUN) concentrations when cows were fed PCU, FGU and SBM diets. Cows consuming the PCU diet had approximately 12.8% more (p = 0.02) dietary dry matter intake than those consuming the FGU diet. Cows fed the PCU diet had higher milk protein content (3.16% vs. 2.94%) and lower milk urea nitrogen (MUN) concentration (13.0 mg/dl vs. 14.4 mg/dl) than those fed the FGU diet. Blood urea nitrogen (BUN) concentration was significantly lower for cows fed the PCU (16.7 mg/dl) and SBM (16.4 mg/dl) diets than the FGU (18.7 mg/dl) diet. Cows fed the PCU diet had less surplus ruminal N than those fed the FGU diet and produced a comparable lactation performance to the SBM diet, suggesting that polyurethane coated urea can partially substitute soybean meal in the dairy cow diet without impairing lactation performance.

The Effects of Thyme and Cinnamon Essential Oils on Performance, Rumen Fermentation and Blood Metabolites in Holstein Calves Consuming High Concentrate Diet

  • Vakili, A.R.;Khorrami, Behzad;Mesgaran, M. Danesh;Parand, E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.7
    • /
    • pp.935-944
    • /
    • 2013
  • Essential oils have been shown to favorably effect in vitro ruminal fermentation, but there are few in vivo studies that have examined animal responses. The objective of this study was to evaluate the effects of thyme (THY) and cinnamon (CIN) essential oils on feed intake, growth performance, ruminal fermentation and blood metabolites in feedlot calves fed high-concentrate diets. Twelve growing Holstein calves ($213{\pm}17kg$ initial BW) were used in a completely randomized design and received their respective dietary treatments for 45 d. Treatments were: 1-control (no additive), 2-THY (5 g/d/calf) and 3-CIN (5 g/d/calf). Calves were fed ad libitum diets consisting of 15% forage and 85% concentrate, and adapted to the finishing diet by gradually increasing the concentrate ratio with feeding a series of transition diets 5 wk before the experiment started. Supplementation of THY or CIN did not affect DMI and ADG, and feed efficiency was similar between treatment groups. There were no effects of additives on ruminal pH and rumen concentrations of ammonia nitrogen and total VFA; whereas molar proportion of acetate and ratio of acetate to propionate decreased, and the molar proportion of propionate increased with THY and CIN supplementation. Rumen molar concentration of butyrate was significantly increased by adding CIN compared to control; but no change was observed with THY compared with control group. No effects of THY, or CIN were observed on valerate, isobutyrate or isovalerate proportions. Plasma concentrations of glucose, cholesterol, triglyceride, urea-N, ${\beta}$-hydroxybutyrate, alanine aminotransferase and aspartate aminotransferase were not changed by feeding THY or CIN. Results from this study suggest that supplementing a feedlot finishing diet with THY or CIN essential oil might be useful as ruminal fermentation modifiers in beef production systems, but has minor impacts on blood metabolites.

Effects of a specific blend of essential oils on apparent nutrient digestion, rumen fermentation and rumen microbial populations in sheep fed a 50:50 alfalfa hay:concentrate diet

  • Khateri, N.;Azizi, O.;Jahani-Azizabadi, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.3
    • /
    • pp.370-378
    • /
    • 2017
  • Objective: An experiment was conducted to investigate the effects of a specific mixture of essential oils (MEO), containing thyme, clove and cinnamon EO, on rumen microbial fermentation, nutrient apparent digestibility and blood metabolites in fistulated sheep. Methods: Six sheep fitted with ruminal fistulas were used in a repeated measurement design with two 24-d periods to investigate the effect of adding MEO at 0 (control), 0.8, and 1.6 mL/d on apparent nutrient digestibility, rumen fermentation characteristics, rumen microbial population and blood chemical metabolites. Animals were fed with a 50:50 alfalfa hay:concentrate diet. Results: Ruminal pH, total volatile fatty acids (VFA) concentration, molar proportion of individual VFA, acetate: propionate ratio and methane production were not affected with MEO. Relative to the control, Small peptides plus amino acid nitrogen and large peptides nitrogen concentration in rumen fluid were not affected with MEO supplementation; while, rumen fluid ammonia nitrogen concentration at 0 and 6 h after morning feeding in sheep fed with 1.6 mL/d of MEO was lower (p<0.05) compared to the control and 0.8 mL/d of MEO. At 0 h after morning feeding, ammonia nitrogen concentration was higher (p<0.05) in sheep fed 0.8 mL/d of MEO relative to 1.6 mL/d and control diet. Ruminal protozoa and hyper ammonia producing (HAP) bacteria counts were not affected by addition of MEO in the diet. Relative to the control, no changes were observed in the red and white blood cells, hemoglobin, hematocrit, glucose, beta-hydroxybutyric acid, cholesterol, total protein, albumin, blood urea nitrogen and aspartate aminotransferase and alanine aminotransferase concentration. Apparent total tract digestibility of dry matter, crude proten, organic matter, and neutral detergent fiber were not influenced by MEO supplementation. Conclusion:The results of the present study suggested that supplementation of MEO may have limited effects on apparent nutrient digestibility, ruminal fermentation and protozoa and HAP bacteria count, blood cells and metabolites.

Ruminal ciliates as modulators of the rumen microbiome

  • Tansol Park
    • Animal Bioscience
    • /
    • v.37 no.2_spc
    • /
    • pp.385-395
    • /
    • 2024
  • Ruminal ciliates are a fundamental constituent within the rumen microbiome of ruminant animals. The complex interactions between ruminal ciliates and other microbial guilds within the rumen ecosystems are of paramount importance for facilitating the digestion and fermentation processes of ingested feed components. This review underscores the significance of ruminal ciliates by exploring their impact on key factors, such as methane production, nitrogen utilization efficiency, feed efficiency, and other animal performance measurements. Various methods are employed in the study of ruminal ciliates including culture techniques and molecular approaches. This review highlights the pressing need for further investigations to discern the distinct roles of various ciliate species, particularly relating to methane mitigation and the enhancement of nitrogen utilization efficiency. The promotion of establishing robust reference databases tailored specifically to ruminal ciliates is encouraged, alongside the utilization of genomics and transcriptomics that can highlight their functional contributions to the rumen microbiome. Collectively, the progressive advancement in knowledge concerning ruminal ciliates and their inherent biological significance will be helpful in the pursuit of optimizing rumen functionality and refining animal production outcomes.

Effects of Activated Carbon and Charcoal on in vitro Nutrient Disappearances and Ruminal Fermentation Characteristics (고농후사료에 대한 목탄 및 활성탄의 첨가 수준이 인공위내 소화율, 휘발성 지방산 및 개스 생산량에 미치는 영향)

  • Lee, Soo-Kee;Cha, Sang-Woo;Kim, Sun-Kyun
    • Korean Journal of Agricultural Science
    • /
    • v.29 no.2
    • /
    • pp.35-42
    • /
    • 2002
  • This study was conducted to investigate the effects of the addition of activated charcoal (AC) and oak charcoal on in vitro ruminal fermentation characteristics, nutrient disappearance, and ruminal gas production. AC and oak charcoal were added at the levels of 0.50, and 1.00 % to experimental diet (roughage/concentrate ratio ; 2/8). Ruminal pH and ammonia-N tended to increase by adding AC(P<0.05). But oak charcoal did not affect the ruminal pH and ammonia-N. Although not significant, ruminal total VFA and molar percentage of butyric acid tended to decrease in AC diets. but molar percentage of acetate and propionate were not affected by adding AC. Ruminal degradation of dry matter, crude protein, NDF, and ADF in AC diets tended to increase than in non-AC diet, however, no tendency in ruminal degradation of hemicellulose was observed. Ruminal gas production tended to increase in the AC and oak charcoal diets(P<0.05). Although there appeared some beneficial effects in adding AC to ruminant diets in this study, more works should be done with AC before we can make clear conclusion on the use of AC in the ruminant diets.

  • PDF

Effects of Medicinal Herb Extracts on In vitro Ruminal Methanogenesis, Microbe Diversity and Fermentation System

  • Kim, Eun Tae;Hwang, Hee Soon;Lee, Sang Min;Lee, Shin Ja;Lee, Il Dong;Lee, Su Kyoung;Oh, Da Som;Lim, Jung Hwa;Yoon, Ho Baek;Jeong, Ha Yeon;Im, Seok Ki;Lee, Sung Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.9
    • /
    • pp.1280-1286
    • /
    • 2016
  • This study was aimed to evaluate the in vitro effects of medicinal herb extracts (MHEs) on ruminal fermentation characteristics and the inhibition of protozoa to reduce methane production in the rumen. A fistulated Hanwoo was used as a donor of rumen fluid. The MHEs (T1, Veratrum patulum; T2, Iris ensata var. spontanea; T3, Arisaema ringens; T4, Carduus crispus; T5, Pueraria thunbergiana) were added to the in vitro fermentation bottles containing the rumen fluid and medium. Total volatile fatty acid (tVFA), total gas production, gas profiles, and the ruminal microbe communities were measured. The tVFA concentration was increased or decreased as compared to the control, and there was a significant (p<0.05) difference after 24 h incubation. pH and ruminal disappearance of dry matter did not show significant difference. As the in vitro ruminal fermentation progressed, total gas production in added MHEs was increased, while the methane production was decreased compared to the control. In particular, Arisaema ringens extract led to decrease methane production by more than 43%. In addition, the result of real-time polymerase chain reaction indicted that the protozoa population in all added MHEs decreased more than that of the control. In conclusion, the results of this study indicated that MHEs could have properties that decrease ruminal methanogenesis by inhibiting protozoa species and might be promising feed additives for ruminants.

Effects of Synchronizing the Rate of Dietary Energy and Nitrogen Release on Ruminal Fermentation, Microbial Protein Synthesis, Blood Urea Nitrogen and Nutrient Digestibility in Beef Cattle

  • Chumpawadee, Songsak;Sommart, K.;Vongpralub, T.;Pattarajinda, V.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.2
    • /
    • pp.181-188
    • /
    • 2006
  • The objective of this research was to determine the effects of synchronizing the rate of dietary energy and nitrogen release on: ruminal fermentation, microbial protein synthesis, blood urea nitrogen, and nutrient digestibility in beef cattle. Four, two-and-a-half year old Brahman-Thai native crossbred steers were selected for the project. Each steer was fitted with a rumen cannula and proximal duodenal cannula. The steers were then randomly assigned in a $4{\times}4$ Latin square design to receive four dietary treatments. Prior to formulation of the dietary treatments, feed ingredients were analyzed for chemical composition and a nylon bag technique was used to analyze the treatments various ingredients for degradability. The treatments were organized in four levels of a synchrony index (0.39, 0.50, 0.62 and 0.74). The results showed that dry matter digestibility trend to be increased (p<0.06), organic matter and acid detergent fiber digestibility increased linearly (p<0.05), while crude protein and neutral detergent fiber digestibility were not significantly different (p>0.05). Higher concentration and fluctuation of ruminal ammonia and blood urea were observed in the animal that received the lower synchrony index diets. As the levels of the synchrony index increased, the concentrations of ruminal ammonia nitrogen and blood urea nitrogen, at the 4 h post feeding, decreased linearly (p<0.05). Total volatile fatty acid and bacteria populations at the 4 h post feeding increased linearly (p<0.05). Microbial protein synthesis trend to be increase (p<0.08). The results of this research indicate that synchronizing the rate of degradation of dietary energy and nitrogen release improves ruminal fermentation, microbial protein synthesis and feed utilization.

Effects of Soybean Small Peptides on Rumen Fermentation and on Intestinal and Total Tract Digestion of Luxi Yellow Cattle

  • Wang, W.J.;Yang, W.R.;Wang, Y.;Song, E.L.;Liu, X.M.;Wan, F.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.1
    • /
    • pp.72-81
    • /
    • 2013
  • Four Luxi beef cattle ($400{\pm}10$ kg) fitted with ruminal, duodenal and ileal cannulas were used in a $4{\times}4$ Latin square to assess the effects of soybean small peptide (SSP) infusion on rumen fermentation, diet digestion and flow of nutrient in the gastrointestinal tract. The ruminal infusion of SSP was 0 (control), 100, 200 and 300 g/d. Ruminal SSP infusion linearly (p<0.01) and quadratically (p<0.01) increased microbial protein synthesis and rumen ammonia-N concentration. Concentrations of total volatile fatty acid were linearly increased (p = 0.029) by infusion SSP. Rumen samples were obtained for analysis of microbial ecology by real-time PCR. Populations of rumen Butyrivibrio fibrisolvens, Streptococcus bovis, Ciliate protozoa, Ruminococcus flavefaciens, and Prevotella ruminicola were expressed as a proportion of total Rumen bacterial 16S ribosomal deoxyribonucleic acid (rDNA). Butyrivibrio fibrisolvens populations which related to total bacterial 16S rDNA were increased (p<0.05), while Streptococcus bovis populations were linearly (p = 0.049) and quadratically (p = 0.020) decreased by infusion of SSP. Apparent rumen digestibility of DM and NDF were (Q, p<0.05; L, p<0.05) increased with infusion SSP. Total tract digestion of DM, OM and NDF were linearly (p<0.01) and quadratically (p<0.01) increased by infusing SSP. The flow of total amino acids (AA), essential amino acids (EAA) and individual amino acids were linearly (p<0.01) and quadratically (p<0.01) increased with infusion SSP. The digestibility of Lysine was quadratically (p = 0.033) increased and apparent degradability of Arginine was linearly (p = 0.032) and quadratically (p = 0.042) increased with infusion SSP. The results indicated that infusion SSP could improve nutrient digestion, ruminal fermentation and AA availability.