Browse > Article
http://dx.doi.org/10.5713/ajas.16.0053

Effects of Medicinal Herb Extracts on In vitro Ruminal Methanogenesis, Microbe Diversity and Fermentation System  

Kim, Eun Tae (National Institute of Animal Science, RDA)
Hwang, Hee Soon (Division of Applied Life Science (BK21+, IALS), Gyeongsang National University)
Lee, Sang Min (Easy Bio, Inc.)
Lee, Shin Ja (Division of Applied Life Science (BK21+, IALS), Gyeongsang National University)
Lee, Il Dong (Division of Applied Life Science (BK21+, IALS), Gyeongsang National University)
Lee, Su Kyoung (Division of Applied Life Science (BK21+, IALS), Gyeongsang National University)
Oh, Da Som (Division of Applied Life Science (BK21+, IALS), Gyeongsang National University)
Lim, Jung Hwa (Division of Applied Life Science (BK21+, IALS), Gyeongsang National University)
Yoon, Ho Baek (National Institute of Animal Science, RDA)
Jeong, Ha Yeon (National Institute of Animal Science, RDA)
Im, Seok Ki (National Institute of Animal Science, RDA)
Lee, Sung Sill (Division of Applied Life Science (BK21+, IALS), Gyeongsang National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.29, no.9, 2016 , pp. 1280-1286 More about this Journal
Abstract
This study was aimed to evaluate the in vitro effects of medicinal herb extracts (MHEs) on ruminal fermentation characteristics and the inhibition of protozoa to reduce methane production in the rumen. A fistulated Hanwoo was used as a donor of rumen fluid. The MHEs (T1, Veratrum patulum; T2, Iris ensata var. spontanea; T3, Arisaema ringens; T4, Carduus crispus; T5, Pueraria thunbergiana) were added to the in vitro fermentation bottles containing the rumen fluid and medium. Total volatile fatty acid (tVFA), total gas production, gas profiles, and the ruminal microbe communities were measured. The tVFA concentration was increased or decreased as compared to the control, and there was a significant (p<0.05) difference after 24 h incubation. pH and ruminal disappearance of dry matter did not show significant difference. As the in vitro ruminal fermentation progressed, total gas production in added MHEs was increased, while the methane production was decreased compared to the control. In particular, Arisaema ringens extract led to decrease methane production by more than 43%. In addition, the result of real-time polymerase chain reaction indicted that the protozoa population in all added MHEs decreased more than that of the control. In conclusion, the results of this study indicated that MHEs could have properties that decrease ruminal methanogenesis by inhibiting protozoa species and might be promising feed additives for ruminants.
Keywords
Medicinal Herb Extracts; Methane Production; Protozoa; Rumen Fermentation;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Barry, T. N., A. Thompson, and D. G. Armstrong. 1977. Rumen fermentation studies on two contrasting diets. 1. Some characteristics of the in vivo fermentation, with special reference to the composition of the gas phase, oxidation/reduction state and volatile fatty acid proportions. J. Agric. Sci. Camb. 89:183-195.   DOI
2 Carroll, E. J. and R. E. Hungate. 1955. Formate dissimilation and methane production in bovine rumen contents. Arch. Biochem. 56:525-536.   DOI
3 Denman, S. E. and C. S. McSweeney. 2006. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 58:572-582.   DOI
4 Denman, S. E., N. W. Tomkins, and C. S. McSweeney. 2007. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol. Ecol. 62:313-322.   DOI
5 Johnson, K. A. and D. E. Johnson. 1995. Methane emissions from cattle. J. Anim. Sci. 73:2483-2492.   DOI
6 Kim, J. J., H. J. Lee, and S. T. Yee. 2012. Effect of Pueraria thunbergiana extracts on the activation of immune cells. J. Life Sci. 22:1107-1113.   DOI
7 Kim, S. J. and G. H. Kim. 2003. Identification for flavones in different parts of Cirsium japonicum. Prev. Nutr. Food Sci. 8:330-335.   DOI
8 Knapp, J. R., G. L. Laur, P. A. Vadas, W. P. Weiss, and J. M. Tricarico. 2014. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 97:3231-3261.   DOI
9 Koike, S. and Y. Kobayashi. 2001. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol. Ecol. 204:361-366.   DOI
10 Latham, M. J. and M. J. Wolin. 1977. Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium. Appl. Environ. Microbiol. 34:297-301.
11 Lee, H. H., S. Y. Kim, Y. M. Ko, J. S. Kim, and S. Y. Lee. 2009. Total polyphenol and flavonoid content and antioxidant activity on ethanol extracts of Arisaema amurense var. serratum Nakai. Tuber. In: Proceedings of the 2009 Spring Symposium of the Plant Resources Society of Korea. 179 p.
12 Makkar, H. P. S., M. Blummel, and K. Becker. 1995. In vitro effects of and interactions between tannins and saponins and fate of tannins in the rumen. J. Sci. Food Agric. 69:481-493.   DOI
13 McDougall, E. I. 1948. Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochem. J. 43:99-109.   DOI
14 Eom, T. H., J. H. Kim, S. I. Lee, and J. G. Jeong. 2013. A herbalogical study on the plants of Iridaceae in Korea. Kor. J. Herbol. 28:85-93.   DOI
15 Dubois, B., N. W. Tomkins, R. D. Kinley, M. Bai, S. Seymour, N. A. Paul, and R. de Nys. 2013. Effect of tropical algae as additives on rumen in vitro gas production and fermentation characteristics. Am. J. Plant Sci. 4:34-43.   DOI
16 Durmic, Z., P. J. Moate, R. Eckard, D. K. Revell, R. Williams, and P. E. Vercoe. 2014. In vitro screening of selected feed additives, plant essential oils and plant extracts for rumen methane mitigation. J. Sci. Food Agric. 94:1191-1196.   DOI
17 Ellis, J. L., E. Kebreab, N. E. Odongo, B. W. McBride, E. K. Okine, and J. France. 2007. Prediction of methane production from dairy and beef cattle. J. Dairy Sci. 90:3456-3467.   DOI
18 FAO. 2006. Livestock's long shadow. Environmental issues and options. Food and Agriculture Organization of the United Nations, Rome, Italy.
19 Hillman, K., D. Lloyd, and A. G. Williams. 1985. Use of a portable quadrupole mass spectrometer for the measurement of dissolved gas concentrations in ovine rumen liquor in situ. Curr. Microbiol. 12:335-339.   DOI
20 Hristov, A., M. Ivan, L. Neill, and T. McAllister. 2003. Evaluation of several potential bioactive agents for reducing protozoal activity in vitro. Anim. Feed Sci. Technol. 105:163-184.   DOI
21 Hungate, R. E. 1967. Hydrogen as an intermediate in the rumen fermentation. Arch. Mikrobiol. 59:158-164.   DOI
22 Janssen, P. H. 2010. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed Sci. Technol. 160:1-22.   DOI
23 Oskoueian, E., N. Abdullah, and A. Oskoueian. 2013. Effects of flavonoids on rumen fermentation activity, methane production, and microbial population. BioMed Res. Int. Article ID 349129.
24 Minato, H. and T. Suto. 1978. Technique for fractionation of bacteria in rumen microbial ecosystem. II. Attachment of bacteria isolated from bovine rumen to cellulose powder in vitro and elution of bacteria attached therefrom. J. Gen. Appl. Microbiol. 24:1-16.   DOI
25 Mitsumori, M. and W. Sun. 2008. Control of rumen microbial fermentation for mitigating methane emissions from the rumen. Asian Australas. J. Anim. Sci. 21:144-154.   DOI
26 Ntaikou, I., H. N. Gavala, M. Kornaros, and G. Lyberatos. 2008. Hydrogen production from sugars and sweet sorghum biomass using Ruminococcus albus. Int. J. Hydrogen. Energy 33:1153-1163.   DOI
27 Patra, A. K. and J. Saxena. 2010. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry 71:1198-1222.   DOI
28 Patra, A. K. and Z. Yu. 2012. Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Appl. Environ. Microbiol. 78:4270-4280.
29 SAS Institute. 1996. SAS User Guide. Release 6.12 edition, SAS Inst. Inc. Cary, NC, USA.
30 Skillman, L. C., A. F. Toovey, A. J. Williams, and A. D. Wright. 2006. Development and validation of a real-time PCR method to quantify rumen protozoa and examination of variability between Entodinium populations in sheep offered a hay-based diet. Appl. Environ. Microbiol. 72:200-206.   DOI
31 Vogels, G. D., W. F. Hoppe, and C. K. Stumm. 1980. Association of methanogenic bacteria with rumen ciliates. Appl. Environ. Microbiol. 40:608-612.
32 Tan, H. Y., C. C. Sieo, N. Abdullah, J. B. Liang, X. D. Huang, and Y. W. Ho. 2011. Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Anim. Feed Sci. Technol. 169:185-193.   DOI
33 Theodorou, M. K., B. A. Williams, M. S. Dhanoa, A. B. McAllan, and J. France. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 48:185-197.   DOI