DOI QR코드

DOI QR Code

Ruminal ciliates as modulators of the rumen microbiome

  • Tansol Park (Department of Animal Science and Technology, Chung-Ang University)
  • Received : 2023.08.18
  • Accepted : 2023.11.22
  • Published : 2024.02.01

Abstract

Ruminal ciliates are a fundamental constituent within the rumen microbiome of ruminant animals. The complex interactions between ruminal ciliates and other microbial guilds within the rumen ecosystems are of paramount importance for facilitating the digestion and fermentation processes of ingested feed components. This review underscores the significance of ruminal ciliates by exploring their impact on key factors, such as methane production, nitrogen utilization efficiency, feed efficiency, and other animal performance measurements. Various methods are employed in the study of ruminal ciliates including culture techniques and molecular approaches. This review highlights the pressing need for further investigations to discern the distinct roles of various ciliate species, particularly relating to methane mitigation and the enhancement of nitrogen utilization efficiency. The promotion of establishing robust reference databases tailored specifically to ruminal ciliates is encouraged, alongside the utilization of genomics and transcriptomics that can highlight their functional contributions to the rumen microbiome. Collectively, the progressive advancement in knowledge concerning ruminal ciliates and their inherent biological significance will be helpful in the pursuit of optimizing rumen functionality and refining animal production outcomes.

Keywords

Acknowledgement

This research was supported by the Chung-Ang University Research Grants in 2023.

References

  1. Huws SAH, Creevey C, Oyama LB, et al. Addressing global ruminant agricultural challenges through understanding the rumen microbiome: past, present and future. Front Microbiol 2018;9:2161. https://doi.org/10.3389/fmicb.2018.02161
  2. Mizrahi I. Rumen symbioses. The Prokaryotes. Berlin Heidelberg, Germany: Springer; 2013. pp. 533-44.
  3. Leng RA, Nolan JV. Nitrogen metabolism in the rumen. J Dairy Sci 1984;67:1072-89. https://doi.org/10.3168/jds.S0022-0302(84)81409-5
  4. Williams AG, Coleman GS. The rumen protozoa. Springer Series in Contemporary Bioscience. New York, USA: Springer-Verlag; 1992.
  5. Bonhomme A. Rumen ciliates: their metabolism and relationships with bacteria and their hosts. Anim Feed Sci Technol 1990;30:203-66. https://doi.org/10.1016/0377-8401(90)90016-2
  6. Newbold CJ, de la Fuente G, Belanche A, Ramos-Morales E, McEwan NR. The role of ciliate protozoa in the rumen. Front Microbiol 2015;6:1313. https://doi.org/10.3389/fmicb.2015.01313
  7. Finlay BJ, Esteban G, Clarke KJ, Williams AG, Embley TM, Hirt RP. Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol Lett 1994;117:157-61. https://doi.org/10.1111/j.1574-6968.1994.tb06758.x
  8. Newbold CJ, Lassalas B, Jouany JP. The importance of methanogens associated with ciliate protozoa in ruminal methane production in vitro. Lett Appl Microbiol 1995;21:230-4. https://doi.org/10.1111/j.1472-765X.1995.tb01048.x
  9. Martin C, Morgavi DP, Doreau M. Methane mitigation in ruminants: from microbe to the farm scale. Animal 2010;4:351-65. https://doi.org/10.1017/S1751731109990620
  10. Ivan M, Neill L, Forster R, Alimon R, Rode LM, Entz T. Effects of Isotricha, Dasytricha, Entodinium, and total fauna on ruminal fermentation and duodenal flow in wethers fed different diets. J Dairy Sci 2000;83:776-87. https://doi.org/10.3168/jds.S0022-0302(00)74940-X
  11. Ivan M. Comparison of duodenal flow and digestibility in fauna-free sheep inoculated with holotrich protozoa, Entodinium monofauna or total mixed protozoa population. Br J Nutr 2009;101:34-40. https://doi.org/10.1017/S0007114508984245
  12. Dehority BA. Rumen microbiology. Nottingham, UK: Nottingham University Press; 2003.
  13. Baraka T. Comparative studies of rumen pH, total protozoa count, generic and species composition of ciliates in camel, buffalo, cattle, sheep and goat in Egypt. J Am Sci 2012;8:448-62.
  14. Imai S. Distribution of rumen ciliate protozoa in cattle, sheep and goat and experimental transfaunaiton of them. Nippon Chikusan Gakkaiho 1978;49:494-505. https://doi.org/10.2508/chikusan.49.494
  15. Imai S, Katsuno M, Ogimoto K. Type of the pattern of the rumen ciliate composition of the domestic ruminants and the predator-prey interaction of the ciliates. Nippon Chikusan Gakkaiho 1979;50:79-87. https://doi.org/10.2508/chikusan.50.79
  16. Park T, Yu Z. Do ruminal ciliates select their preys and prokaryotic symbionts? Front Microbiol 2018;9:1710. https://doi.org/10.3389/fmicb.2018.01710
  17. Kisidayova S, Durkaj D, Mihalikova K, et al. Rumen ciliated protozoa of the free-living European bison (Bison bonasus, Linnaeus). Front Microbiol 2021;12:658448. https://doi.org/10.3389/fmicb.2021.658448
  18. Henderson G, Cox F, Ganesh S, et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep 2015;5:14567. https://doi.org/10.1038/srep14567
  19. Williams AG. Rumen holotrich ciliate protozoa. Microbiol Rev 1986;50:25-49. https://doi.org/10.1128/mr.50.1.25-49.1986
  20. Coleman GS. The cellulase content of 15 species of entodiniomorphid protozoa, mixed bacteria and plant debris isolated from the ovine rumen. J Agric Sci 1985;104:349-60. https://doi.org/10.1017/S0021859600044038
  21. Belanche A, de la Fuente G, Moorby JM, Newbold CJ. Bacterial protein degradation by different rumen protozoal groups. J Anim Sci 2012;90:4495-504. https://doi.org/10.2527/jas.2012-5118
  22. Morgavi DP, Sakurada M, Tomita Y, Onodera R. Electrophoretic forms of chitinolytic and lysozyme activities in ruminal protozoa. Curr Microbiol 1996;32:115-8. https://doi.org/10.1007/s002849900020
  23. Coleman GS. The preparation and survival of almost bacteria-free suspensions of Entodinium caudatum. J Gen Microbiol 1962;28:271-81. https://doi.org/10.1099/00221287-28-2-271
  24. Hino T, Kametaka M. Gnotobiotic and axenic cultures of a rumen protozoon, Entodinium caudatum. J Gen Appl Microbiol 1977;23:37-48. https://doi.org/10.2323/jgam.23.37
  25. Bonhomme A, Fonty G, Senaud J. Attempt to obtain and maintain rumen entodiniomorph ciliates in axenic cultures. Ann Microbiol (Paris) 1982;133:335-41.
  26. Park T, Meulia T, Firkins JL, Yu Z. Inhibition of the rumen ciliate Entodinium caudatum by antibiotics. Front Microbiol 2017;8:1189. https://doi.org/10.3389/fmicb.2017.01189
  27. Belzecki G, Miltko R, Kwiatkowska E, Michalowski T. The ability of rumen ciliates, Eudiplodinium maggii, Diploplastron affine, and Entodinium caudatum, to use the murein saccharides. Folia Microbiol 2013;58:463-8. https://doi.org/10.1007/s12223-013-0231-0
  28. Fondevila M, Dehority BA. In vitro growth and starch digestion by Entodinium exiguum as influenced by the presence or absence of live bacteria. J Anim Sci 2001;79:2465-71. https://doi.org/10.2527/2001.7992465x
  29. Fondevila M, Dehority BA. Preliminary study on the requirements of Entodinium exiguum and E. caudatum for live or dead bacteria when cultured in vitro. Reprod Nutr Dev 2001;41:41-6. https://doi.org/10.1051/rnd:2001110
  30. Dehority BA. Improved in vitro procedure for maintaining stock cultures of three genera of rumen protozoa. J Anim Sci 2008;86:1395-401. https://doi.org/10.2527/jas.2007-0238
  31. Kisidayova S, Varadyova Z, Zelenak I, Siroka P. Methanogenesis in rumen ciliate cultures of Entodinium caudatum and Epidinium ecaudatum after long-term cultivation in a chemically defined medium. Folia Microbiol 2000;45:269-74. https://doi.org/10.1007/BF02908958
  32. Dehority BA. In vitro determination of generation times for Entodinium exiguum, Ophryoscolex purkynjei and Eudiplodinium maggii. J Eukaryot Microbiol 2004;51:333-8. https://doi.org/10.1111/j.1550-7408.2004.tb00575.x
  33. Dehority BA. Generation times of Epidinium caudatum and Entodinium caudatum, determined in vitro by transferring at various time intervals. J Anim Sci 1998;76:1189-96. https://doi.org/10.2527/1998.7641189x
  34. Nsabimana E, Kisidayova S, Macheboeuf D, Newbold CJ, Jouany JP. Two-step freezing procedure for cryopreservation of rumen ciliates, an effective tool for creation of a frozen rumen protozoa bank. Appl Environ Microbiol 2003;69:3826-32. https://doi.org/10.1128/AEM.69.7.3826-3832.2003
  35. Belanche A, de la Fuente G, Newbold CJ. Study of methanogen communities associated with different rumen protozoal populations. FEMS Microbiol Ecol 2014;90:663-77. https://doi.org/10.1111/1574-6941.12423
  36. Williams AG. The selectivity of carbohydrate assimilation by the anaerobic rumen ciliate Dasytricha ruminantium. J Appl Bacteriol 1979;47:511-20. https://doi.org/10.1111/j.1365-2672.1979.tb01212.x
  37. Irbis C, Ushida K. Detection of methanogens and proteobacteria from a single cell of rumen ciliate protozoa. J Gen Appl Microbiol 2004;50:203-12. https://doi.org/10.2323/jgam.50.203
  38. Solomon R, Wein T, Levy B, et al. Protozoa populations are ecosystem engineers that shape prokaryotic community structure and function of the rumen microbial ecosystem. ISME J 2022;16:1187-97. https://doi.org/10.1038/s41396-021-01170-y
  39. Levy B, Jami E. Exploring the prokaryotic community associated with the rumen ciliate protozoa population. Front Microbiol 2018;9:2526. https://doi.org/10.3389/fmicb.2018.02526
  40. Xia Y, Kong YH, Seviour R, Forster RJ, Kisidayova S, McAllister TA. Fluorescence in situ hybridization probing of protozoal Entodinium spp. and their methanogenic colonizers in the rumen of cattle fed alfalfa hay or triticale straw. J Appl Microbiol 2014;116:14-22. https://doi.org/10.1111/jam.12356
  41. Valle ER, Henderson G, Janssen PH, Cox F, Alexander TW, McAllister TA. Considerations in the use of fluorescence in situ hybridization (FISH) and confocal laser scanning microscopy to characterize rumen methanogens and define their spatial distributions. Can J Microbiol 2015;61:417-28. https://doi.org/10.1139/cjm-2014-0873
  42. Park T, Yu Z. Aerobic cultivation of anaerobic rumen protozoa, Entodinium caudatum and Epidinium caudatum. J Microbiol Methods 2018;152:186-93. https://doi.org/10.1016/j.mimet.2018.08.006
  43. Dehority BA. Laboratory manual for classification and morphology of rumen ciliate protozoa. Boca Raton, FL, USA: CRC Press; 1993.
  44. Imai S, Shinno T, Ike K, Morita T, Selim HM. Fourteen morphotypes of Entodinium ovumrajae (Ophryoscolecidae, Entodiniomorphida) found in the Dromedary camel of Egypt. J Eukaryot Microbiol 2004;51:594-7. https://doi.org/10.1111/j.1550-7408.2004.tb00591.x
  45. Firkins JL, Yu Z, Park T, Plank JE. Extending Burk Dehority's perspectives on the role of ciliate protozoa in the rumen. Front Microbiol 2020;11:123. https://doi.org/10.3389/fmicb.2020.00123
  46. Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013;41:D590-6. https://doi.org/10.1093/nar/gks1219
  47. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS. Methanogens: reevaluation of a unique biological group. Microbiol Rev 1979;43:260-96. https://doi.org/10.1128/mr.43.2.260-296.1979
  48. Guyader J, Eugene M, Noziere P, Morgavi DP, Doreau M, Martin C. Influence of rumen protozoa on methane emission in ruminants: a meta-analysis approach. Animal 2014;8:1816-25. https://doi.org/10.1017/S1751731114001852
  49. Ushida K, Newbold CJ, Jouany JP. Interspecies hydrogen transfer between the rumen ciliate Polyplastron multivesiculatum and Methanosarcina barkeri. J Gen Appl Microbiol 1997;43:129-31. https://doi.org/10.2323/jgam.43.129
  50. Dai X, Faciola AP. Evaluating strategies to reduce ruminal protozoa and their impacts on nutrient utilization and animal performance in ruminants-A meta-analysis. Front Microbiol 2019;10:2648. https://doi.org/10.3389/fmicb.2019.02648
  51. Tymensen LD, Beauchemin KA, McAllister TA. Structures of free-living and protozoa-associated methanogen communities in the bovine rumen differ according to comparative analysis of 16S rRNA and mcrA genes. Microbiology 2012; 158:1808-17. https://doi.org/10.1099/mic.0.057984-0
  52. Ng F, Kittelmann S, Patchett ML, et al. An adhesin from hydrogen-utilizing rumen methanogen Methanobrevibacter ruminantium M1 binds a broad range of hydrogen-producing microorganisms. Environ Microbiol 2016;18:3010-21. https://doi.org/10.1111/1462-2920.13155
  53. Danielsson R, Schnurer A, Arthurson V, Bertilsson J. Methanogenic population and CH4 production in Swedish dairy cows fed different levels of forage. Appl Environ Microbiol 2012;78:6172-9. https://doi.org/10.1128/AEM.00675-12
  54. Danielsson R, Dicksved J, Sun L, et al. Methane production in dairy cows correlates with rumen methanogenic and bacterial community structure. Front Microbiol 2017;8:226. https://doi.org/10.3389/fmicb.2017.00226
  55. Smith PE, Kelly AK, Kenny DA, Waters SM. Differences in the composition of the rumen microbiota of finishing beef cattle divergently ranked for residual methane emissions. Front Microbiol 2022;13:855565. https://doi.org/10.3389/fmicb.2022.855565
  56. Martinez-Fernandez G, Abecia L, Arco A, et al. Effects of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol on ruminal fermentation, microbial abundance, and methane emissions in sheep. J Dairy Sci 2014;97:3790-9. https://doi.org/10.3168/jds.2013-7398
  57. Haisan J, Sun Y, Guan LL, et al. The effects of feeding 3-nitrooxypropanol on methane emissions and productivity of Holstein cows in mid lactation. J Dairy Sci 2014;97:3110-9. https://doi.org/10.3168/jds.2013-7834
  58. Schilde M, von Soosten D, Huther L, Meyer U, Zeyner A, Danicke S. Effects of 3-nitrooxypropanol and varying concentrate feed proportions in the ration on methane emission, rumen fermentation and performance of periparturient dairy cows. Arch Anim Nutr 2021;75:79-104. https://doi.org/10.1080/1745039X.2021.1877986
  59. Romero-Perez A, Okine EK, McGinn SM, et al. The potential of 3-nitrooxypropanol to lower enteric methane emissions from beef cattle. J Anim Sci 2014;92:4682-93. https://doi.org/10.2527/jas.2014-7573
  60. Morgavi DP, Forano E, Martin C, Newbold CJ. Microbial ecosystem and methanogenesis in ruminants. Animal 2010;4:1024-36. https://doi.org/10.1017/S1751731110000546
  61. Newbold CJ, Lopez S, Nelson N, Ouda JO, Wallace RJ, Moss AR. Propionate precursors and other metabolic intermediates as possible alternative electron acceptors to methanogenesis in ruminal fermentation in vitro. Br J Nutr 2005;94:27-35. https://doi.org/10.1079/bjn20051445
  62. Villar ML, Hegarty RS, Clay JW, Smith KA, Godwin IR, Nolan JV. Dietary nitrate and presence of protozoa increase nitrate and nitrite reduction in the rumen of sheep. J Anim Physiol Anim Nutr 2020;104:1242-55. https://doi.org/10.1111/jpn.13365
  63. Lin M, Schaefer DM, Guo WS, Ren LR, Meng QX. Comparisons of in vitro nitrate reduction, methanogenesis, and fermentation acid profile among rumen bacterial, protozoal and fungal fractions. Asian-Australas J Anim Sci 2011;24:471-8. https://doi.org/10.5713/ajas.2011.10288
  64. Ahmed E, Batbekh B, Fukuma N, et al. A garlic and citrus extract: Impacts on behavior, feed intake, rumen fermentation, and digestibility in sheep. Anim Feed Sci Technol 2021;278: 115007. https://doi.org/10.1016/j.anifeedsci.2021.115007
  65. Khurana R, Brand T, Tapio I, Bayat AR. Effect of a garlic and citrus extract supplement on performance, rumen fermentation, methane production, and rumen microbiome of dairy cows. J Dairy Sci 2023;106:4608-21. https://doi.org/10.3168/jds.2022-22838
  66. Roque BM, Van Lingen HJ, Vrancken H, Kebreab E. Effect of Mootral-a garlic-and citrus-extract-based feed additive-on enteric methane emissions in feedlot cattle. Transl Anim Sci 2019;3:1383-8. https://doi.org/10.1093/tas/txz133
  67. Ma T, Chen D, Tu Y, et al. Effect of supplementation of allicin on methanogenesis and ruminal microbial flora in Dorper crossbred ewes. J Anim Sci Biotechnol 2016;7:1. https://doi.org/10.1186/s40104-015-0057-5
  68. Belanche A, Newbold CJ, Morgavi DP, Bach A, Zweifel B, Yanez-Ruiz DR. A meta-analysis describing the effects of the essential oils blend agolin ruminant on performance, rumen fermentation and methane emissions in dairy cows. Animals 2020;10:620. https://doi.org/10.3390/ani10040620
  69. Patra AK, Min BR, Saxena J. Dietary tannins on microbial ecology of the gastrointestinal tract in ruminants. In: Patra A, editor. Dietary phytochemicals and microbes. Dordrecht, The Netherlands. Springer; 2012. pp. 237-62.
  70. Cieslak A, Szumacher-Strabel M, Stochmal A, Oleszek W. Plant components with specific activities against rumen methanogens. Animal 2013;7(Suppl 2):253-65. https://doi.org/10.1017/s1751731113000852
  71. Patra A, Park T, Kim M, Yu Z. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J Anim Sci Biotechnol 2017;8:13. https://doi.org/10.1186/s40104-017-0145-9
  72. Jayanegara A, Wina E, Takahashi J. Meta-analysis on methane mitigating properties of saponin-rich sources in the rumen: influence of addition levels and plant sources. Asian-Australas J Anim Sci 2014;27:1426-35. https://doi.org/10.5713/ajas.2014.14086
  73. Darabighane B, Mahdavi A, Aghjehgheshlagh FM, Navidshad B, Yousefi MH, Lee MRF. The effects of dietary saponins on ruminal methane production and fermentation parameters in sheep: a meta analysis. Iranian J Appl Anim Sci 2021;11:15-21.
  74. Patra AK, Saxena J. Dietary phytochemicals as rumen modifiers: a review of the effects on microbial populations. Antonie Van Leeuwenhoek 2009;96:363-75. https://doi.org/10.1007/s10482-009-9364-1
  75. Orzuna-Orzuna JF, Dorantes-Iturbide G, Lara-Bueno A, Mendoza-Martinez GD, Miranda-Romero LA, Hernandez-Garcia PA. Effects of dietary tannins' supplementation on growth performance, rumen fermentation, and enteric methane emissions in beef cattle: a meta-analysis. Sustainability 2021;13:7410. https://doi.org/10.3390/su13137410
  76. Paul RG, Williams AG, Butler RD. Hydrogenosomes in the rumen entodiniomorphid ciliate Polyplastron multivesiculatum. Microbiology 1990;136:1981-9. https://doi.org/10.1099/00221287-136-10-1981
  77. Belanche A, de la Fuente G, Newbold CJ. Effect of progressive inoculation of fauna-free sheep with holotrich protozoa and total-fauna on rumen fermentation, microbial diversity and methane emissions. FEMS Microbiol Ecol 2015;91:fiu026. https://doi.org/10.1093/femsec/fiu026
  78. Park T, Wijeratne S, Meulia T, Firkins JL, Yu Z. The macronuclear genome of anaerobic ciliate Entodinium caudatum reveals its biological features adapted to the distinct rumen environment. Genomics 2021;113:1416-27. https://doi.org/10.1016/j.ygeno.2021.03.014
  79. Li Z, Wang X, Zhang Y, et al. Genomic insights into the phylogeny and biomass-degrading enzymes of rumen ciliates. ISME J 2022;16:2775-87. https://doi.org/10.1038/s41396-022-01306-8
  80. Prins RA, Van Rheenen DL, van't Klooster AT. Characterization of microbial proteolytic enzymes in the rumen. Antonie van Leeuwenhoek 1983;49:585-95. https://doi.org/10.1007/BF00399852
  81. Forsberg CW, Lovelock LKA, Krumholz L, Buchanan-Smith JG. Protease activities of rumen protozoa. Appl Environ Microbiol 1984;47:101-10. https://doi.org/10.1128/aem.47.1.101-110.1984
  82. Park T, Yu Z. Interactions between Entodinium caudatum and an amino acid-fermenting bacterial consortium: fermentation characteristics and protozoal population in vitro. J Anim Sci Technol 2023;65:387-400. https://doi.org/10.5187/jast.2022.e111
  83. Adachi K, Kawano H, Tsuno K, et al. Relationship between serum biochemical values and marbling scores in Japanese Black steers. J Vet Med Sci 1999;61:961-4. https://doi.org/10.1292/jvms.61.961
  84. Abe M, Iriki T, Tobe N, Shibui H. Sequestration of holotrich protozoa in the reticulo-rumen of cattle. Appl Environ Microbiol 1981;41:758-65. https://doi.org/10.1128/aem.41.3.758-765.1981
  85. Punia BS, Leibholz J, Faichney GJ. Rate of production of protozoa in the rumen and the flow of protozoal nitrogen to the duodenum in sheep and cattle given a pelleted diet of lucerne hay and barley. J Agric Sci 1992;118:229-36. https://doi.org/10.1017/S0021859600068830
  86. Sylvester JT, Karnati SKR, Yu Z, Newbold CJ, Firkins JL. Evaluation of a real-time PCR assay quantifying the ruminal pool size and duodenal flow of protozoal nitrogen. J Dairy Sci 2005;88:2083-95. https://doi.org/10.3168/jds.S0022-0302(05)72885-X
  87. Eugene M, Archimede H, Sauvant D. Quantitative meta-analysis on the effects of defaunation of the rumen on growth, intake and digestion in ruminants. Livest Prod Sci 2004;85:81-97. https://doi.org/10.1016/S0301-6226(03)00117-9
  88. Ivan M, Neill L, Entz T. Ruminal fermentation and duodenal flow following progressive inoculations of fauna-free wethers with major individual species of ciliate protozoa or total fauna. J Anim Sci 2000;78:750-9. https://doi.org/10.2527/2000.783750x
  89. Park T, Yang C, Yu Z. Specific inhibitors of lysozyme and peptidases inhibit the growth of the rumen protozoan Entodinium caudatum without decreasing feed digestion or fermentation in vitro. J Appl Microbiol 2019;127:670-82. https://doi.org/10.1111/jam.14341
  90. Park T, Mao H, Yu Z. Inhibition of rumen protozoa by specific inhibitors of lysozyme and peptidases in vitro. Front Microbiol 2019;10:2822. https://doi.org/10.3389/fmicb.2019.02822
  91. Shabat SKB, Sasson G, Doron-Faigenboim A, et al. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. ISME J 2016;10:2958-72. https://doi.org/10.1038/ismej.2016.62
  92. Clemmons BA, Shin SB, Smith TPL, et al. Ruminal protozoal populations of angus steers differing in feed efficiency. Animals 2021;11:1561. https://doi.org/10.3390/ani11061561
  93. de la Fuente G, Fondevila M, Belanche A, Morgavi D. In vitro predation of pure bacterial species by rumen protozoa from monofaunated sheep, determined by qPCR. Options Mediterraneennes 2011;99:91-6.
  94. Mosoni P, Martin C, Forano E, Morgavi DP. Long-term defaunation increases the abundance of cellulolytic ruminococci and methanogens but does not affect the bacterial and methanogen diversity in the rumen of sheep. J Anim Sci 2011;89:783-91. https://doi.org/10.2527/jas.2010-2947
  95. Park T, Cersosimo LM, Li W, Radloff W, Zanton GI. Preweaning ruminal administration of differentially-enriched, rumen-derived inocula shaped rumen bacterial communities and co-occurrence networks of post-weaned dairy calves. Front Microbiol 2021;12:625488. https://doi.org/10.3389/fmicb.2021.625488
  96. Park T, Cersosimo LM, Radloff W, Zanton GI, Li W. The rumen liquid metatranscriptome of post-weaned dairy calves differed by pre-weaning ruminal administration of differentially-enriched, rumen-derived inocula. Anim Microbiome 2022;4:4. https://doi.org/10.1186/s42523-021-00142-z
  97. Bu D, Zhang X, Ma L, et al. Repeated inoculation of young calves with rumen microbiota does not significantly modulate the rumen prokaryotic microbiota consistently but decreases diarrhea. Front Microbiol 2020;11:1403. https://doi.org/10.3389/fmicb.2020.01403
  98. Gong J, Qing Y, Zou S, et al. Protist-bacteria associations: Gammaproteobacteria and Alphaproteobacteria are prevalent as digestion-resistant bacteria in ciliated protozoa. Front Microbiol 2016;7:498. https://doi.org/10.3389/fmicb.2016.00498
  99. Pope PB, Smith W, Denman SE, et al. Isolation of Succinivibrionaceae implicated in low methane emissions from Tammar wallabies. Science 2011;333:646-8. https://doi.org/10.1126/science.1205760
  100. Indugu N, Vecchiarelli B, Baker LD, Ferguson JD, Vanamala JKP, Pitta DW. Comparison of rumen bacterial communities in dairy herds of different production. BMC Microbiol 2017;17:190. https://doi.org/10.1186/s12866-017-1098-z
  101. Onodera R, Henderson C. Growth factors of bacterial origin for the culture of the rumen oligotrich protozoon, Entodinium caudatum. J Appl Bacteriol 1980;48:125-34. https://doi.org/10.1111/j.1365-2672.1980.tb05214.x
  102. Wang L, Abu-Doleh A, Plank J, et al. The transcriptome of the rumen ciliate Entodinium caudatum reveals some of its metabolic features. BMC Genomics 2019;20:1008. https://doi.org/10.1186/s12864-019-6382-x
  103. Findley SD, Mormile MR, Sommer-Hurley A, et al. Activity-based metagenomic screening and biochemical characterization of bovine ruminal protozoan glycoside hydrolases. Appl Environ Microbiol 2011;77:8106-13. https://doi.org/10.1128/aem.05925-11
  104. Williams CL, Thomas BJ, McEwan NR, Rees Stevens P, Creevey CJ, Huws SA. Rumen protozoa play a significant role in fungal predation and plant carbohydrate breakdown. Front Microbiol 2020;11:720. https://doi.org/10.3389/fmicb.2020.00720