Browse > Article
http://dx.doi.org/10.5187/JAST.2009.51.6.511

Effects of Thymol, Eugenol and Malate on In vitro Rumen Microbial Fermentation  

Kim, Do-Hyung (National Institute of Animal Science, RDA)
Kim, Kyoung-Hoon (National Institute of Animal Science, RDA)
Choi, Chang-Won (National Institute of Animal Science, RDA)
Hong, Seong-Koo (National Institute of Animal Science, RDA)
Seol, Yong-Joo (National Institute of Animal Science, RDA)
Kwon, Eung-Gi (National Institute of Animal Science, RDA)
Kim, Wan-Young (Korea National Agricultural College)
Nam, In-Sik (Korea Livestock Products HACCP Accreditation Service)
Lee, Sung-Sill (Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University)
Oh, Young-Kyoon (National Institute of Animal Science, RDA)
Publication Information
Journal of Animal Science and Technology / v.51, no.6, 2009 , pp. 511-520 More about this Journal
Abstract
The purpose of this study was to investigate effects of increased levels of eugenol, thymol and malate on pH and the concentrations of VFA, lactate and ammonia-N during in vitro ruminal incubation. One Hanwoo beef steer (741 kg) fitted with a rumen cannula was used and fed 0.5 kg/day rice straw and 10 kg/day corn-based concentrate (ratio of concentrate to rice straw = 95 : 5 on DM basis). Three different doses of thymol, eugenol and malate were used. Treatments of the experiment were as follows: Treatments of thymol were control (1g D-glucose/40ml), T1 (1g D-glucose + 40 mg thymol/40 ml), T2 (1g D-glucose + 50 mg thymol/40 ml) and T3 (1g D-glucose + 60 mg thymol/40 ml). Treatments of eugenol were control (1g D-glucose/40 ml), E1 (1g D-glucose + 55 mg eugenol/40 ml), E2 (1g D-glucose + 65 mg eugenol/40 ml) and E3 (1g D-glucose + 75 mg eugenol/40 ml). Treatments of malate were control (1g D-glucose/40ml), M1 (1g D-glucose + 25 mg malate/40ml), M2 (1g D-glucose + 50 mg malate/40 ml) and M3 (1g D-glucose + 100 mg malate/40 ml). The results of this study showed that eugenol and thymol have improved stability of the ruminal fermentation by decreasing lactic acid concentration and increasing ruminal pH. However, it inhibited the production of total VFA, acetate and propionate. Malate also improved stability of the ruminal fermentation by decreasing lactic acid concentration and increasing ruminal pH, but it had a very little effect on ruminal lactate concentrations and pH. On the other hand, malate did not decrease the concentrations of total VFA, acetate and propionate. Therefore, at the low ruminal pH expected in high-concentrate diets, thymol, eugenol, and malate are potentially useful in Hanwoo finishing diets. Further studies are necessary for determining the effectiveness of these additives on in vivo rumen fermentation and animal performance in Hanwoo finishing steers.
Keywords
Eugenol; Thymol; Malate; Rumen fermentation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Walsh, S. E., Maillard, J. Y., Russell, A. D., Catrenith, C. E., Charbonneau, D. L. and Bartolo, R. G. 2003. Activity and mechanisms of action of selected biocidal agents on grampositive and negative bacteria. J. Appl. Microbiol. 94:240-247.   DOI   ScienceOn
2 Panizzi, L., Flamini, G., Cioni, P. L. and Moreli, I. 1993. Composition and antimicrobial properties of essential oils of four mediterranean Lamiaceae. J. Ethnopharmacol. 39:167-170.   DOI   ScienceOn
3 Rural Development Administration. 2007. The standard farming textbook. Hanwoo. 6th edition.
4 Russell, J. B. and Hino, T. 1985. Regulation of lactate production in Streptococcus bovis. A spiraling effect that contributes to rumen acidosis. J. Dairy. Sci. 68:1712-1721.   DOI
5 SAS Institute, 2002. SAS${\circledR}$ User's guide: Statistics. Version 9.1 Edition. Statistical Analysis Systems Institute Inc., Cary, NC.
6 Slyter, L. L. 1976. Influence of acidosis on rumen function. J. Animal Sci.43:910-929.   DOI
7 Smith-Palmer, A., Stewart, J. and Fyfe, L. 1998. Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Letters in Applied Microbiology. 26:118-122.   DOI   ScienceOn
8 Tilley, J. M. A. and Terry, R. A. 1963. A two-stage technique for the in vitro digestion of forage crops J. Brit. Grassland Soc. 18:104-111.   DOI
9 Van Soest, P. J., Robertson, J. B. and Lewis, B. A. 1991. Methods of dietary fiber, neutral detergent fiber and non-starch poly-saccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597.   DOI
10 Martin, S. A. and Park, C. M. 1996. Effect of extracellular hydrogen on organic acid utilization by the ruminal bacterium Selenomonas ruminantium. Curr. Microbiol. 32:327-331.   DOI
11 Martin, S. A. and Streeter, M. N. 1995. Effect of malate on in vitro mixed ruminal microorganism fermentation. J. Anim. Sci. 73:2141-2145.   DOI
12 Martin, S. A., Streeter, M. N., Nisbet, D. J., Hill, G. M. and Williams, S. E. 1999. Effects of DL-malate on ruminal metabolism and performance of cattle fed a high-concentrate diet. J. Anim. Sci. 77:1008-1015.   DOI
13 MeDougal, E. I. 1948. Studies on ruminant saliva. 1. The composition and output of sheep’s saliva. Biochem. J. 43:99-103.   DOI
14 Montano, M .F., Chai, W., Zinn-Ware, T. E. and Zinn, R. A. 1999. Influence of malic acid supplementation on ruminal pH, lactic acid utilization, and digestive function in steers fed high-concentrate finishing diets. J. Anim. Sci. 77:780-784.   DOI
15 Nisbet, D. J. and Martin, S. A. 1994. Factors affecting Llactate utilization by Selenomonas ruminantium. J. Anim. Sci. 72:1355-1361.   DOI
16 Gottschalk, G. 1986. Bacterial Metabolism (2nd Ed.). Springer Verlag, New York.
17 Greathead, H. 2003. Plants and plant extracts for improving animal productivity. Proceedings of the Nutrition Society. 62: 279-290.   DOI   ScienceOn
18 Helander, I. M., Alakomi, H., Latva-Kala, K., Mattila-Sandholm, T., Pol, I., Smid, E. J., Gorris, L. G. M. and Wright, A. 1998. Characteritzation of the action of selected essential oil components on gram-negative bacteria. J. Agric. Food Chem. 46:3590-3595.   DOI   ScienceOn
19 Lehninger, A. L. 1975. Biochemistry (2nd Ed.). Worth Publishers, New York.
20 Martin, S. A. 1998. Manipulation of ruminal fermentation with organic acids: A review. J. Anim. Sci. 76:3123-3132.   DOI
21 Davidson, P. M. and Naidu, A. S. 2000. Phyto-phenols. Pages 265-293 in Natural Food Antimicrobial Systems. A. S. Naidu, ed. CRC Press, Boca Raton, FL.
22 Dawson, D. A. and Allison, M. J. 1988. Digestive disorders and nutritional toxicity. Pages 445-459 in The rumen microbial ecosystem. P. N. Hobson, ed. Elsevier Science Publishers Ltd., London, U.K.
23 Dawson, K. A., Rasmussen, M. A. and Allison, M. J. 1997. Digestive disorders and nutritional toxicity. In: Hobson, P. N., and C. S. Stewart. (eds), The rumen microbial ecosystem, 2nd edn, pp. 633-660. Blackie Academic and Professional, London.
24 Dorman, H. J. D. and Deans, S. G. 2000. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 88:308-316.   DOI   ScienceOn
25 Erwin, E. S., Marco, G. T. and Emery, E. M. 1961. Volatile fatty acid analysis of blood and rumen fluid by gas chromatography. J. Dairy Sci. 44:1768-1771.   DOI
26 Evans, J. D. and Martin, S. A. 2000. Effects of thymol on ruminal microorganisms. Curr. Microbiol. 41:336-340.   DOI
27 Gershenzon, J. and Croteau, R. 1991. Terpenoids. Pages 165-219 in Herbivores: Their Interactions with Secondary Plant Metabolites. Vol. 1. G. A. Rosenthal, and M. R. Berenbaum, ed. Academic Press, San Diego, CA.
28 Benchaar, C., Petit, H. V., Berthiaume, R., Ouellet, D. R., Chiquette, J. and Chouinard, P. Y. 2007. Effects of essential oils on digestion, ruminal fermentation, rumen microbial populations, milk production, and milk composition in dairy cows fed alfalfa silage or corn silage. J. Dairy Sci. 90:886-897.   DOI   ScienceOn
29 Bevans, D. W., Beauchemin, K. A., Schwartzkopf-Genswein, K. S., McKinnon, J. J. and McAllister, T. A. 2005. Effect of rapid or gradual grain adaptation on subacute acidosis and feed intake by feedlot cattle. J. Anim. Sci. 83:1116-1132.   DOI
30 Borchers, R. 1965. Proteolytic activity of rumen fluid in vitro. J. Anim. Sci. 24:1033-1038.   DOI
31 Castillejos, L., Calsamiglia, S. and Ferret, A. 2006. Effect of essential oils active compounds on rumen microbial fermentation and nutrient flow in in vitro systems. J. Dairy Sci. 89: 2649-2658.   DOI   ScienceOn
32 Burt, S. 2004. Essential oils: Their antibacterial properties and potential applications in foods-A review. Int. J. Food Microbiol. 94:223-253.   DOI   ScienceOn
33 Busquet, M., Calsamiglia, S., Ferret, A. and Kamel, C. 2006. Plant extracts affect in vitro rumen microbial fermentation. J. Dairy Sci. 89:761-771.   DOI   ScienceOn
34 Callaway, T. R. and Martin, S. A. 1996. Effect of organic acid and monensin treatment on in vitro mixed ruminal microorganism fermentation of cracked corn. J. Anim Sci. 74: 1982-1989.   DOI
35 Chaney, A. L. and Marbach, E. P. 1962. Modified reagents for determination of urea and ammonia. Clin. Biochem. 8:130-137.
36 Chao, S. C. and Young, D. G. 2000. Screening for inhibitory activity of essential oils on selected bacteria, fungi and viruses. J. Essent. Oil Res. 12:639-649.   DOI   ScienceOn
37 Association of Official Analytical Chemists. 1990. Official Methods of Analysis, Association of Official Analytical Chemists, Washington, D. C.