• Title/Summary/Keyword: ruminal degradability

Search Result 112, Processing Time 0.021 seconds

Evaluation on Feed-Nutritional Value of Spent Mushroom(Pleurotus osteratus, Pleurotus eryngii, Flammulina velutupes) Substrates as a Roughage Source for Ruminants (느타리, 새송이 및 팽이버섯 폐배지의 반추동물 조사료원으로서의 사료 영양적 가치평가)

  • 배지선;김영일;정세형;오영균;곽완섭
    • Journal of Animal Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.237-246
    • /
    • 2006
  • This study was conducted to evaluate the feed-nutritional value of spent mushroom substrates(SMS) as a roughage source for ruminants through in vitro and in situ experiments. The SMS was classified into a roughage source with high fiber(NDF 64~78%) and low protein(CP 7~11%). The chemical composition of SMS was affected mainly by the primary culture ingredient rather than mushroom species. Compared with sawdust-SMS, cotton waste-SMS contained less(P<0.05) NDF and more(P<0.05) nonfibrous carbohydrate and ash(P<0.05). In vitro DM and NDF disappearances were high in the order of corn cob-, cotton waste-, and sawdust-SMS, in situ DM, NDF and ADF disappearances at 24hr incubation also showed the same pattern with in vitro trials. Compared with sawdust-SMS, cotton waste-SMS had higher digestible fractions and lower non-digestible fractions of NDF and ADF(P<0.05), resulting in higher in situ DM and NDF disappearances(P<0.05) and higher ruminal degradability(P<0.05). Therefore, the preferential use of cotton waste-SMS to sawdust-SMS is recommended as a roughage source for ruminants.

Effects of rice straw fermented with spent Pleurotus sajor-caju mushroom substrates on milking performance in Alpine dairy goats

  • Fan, Geng-Jen;Chen, Mei-Hsing;Lee, Churng-Faung;Yu, Bi;Lee, Tzu-Tai
    • Animal Bioscience
    • /
    • v.35 no.7
    • /
    • pp.999-1009
    • /
    • 2022
  • Objective: To improve the feeding value of rice straw (RS), this study evaluated the potential of rice straw fermented with Pleurotus sajor-caju (FRS) as dairy goat feed. Methods: Spent Pleurotus sajor-caju mushroom substrate was used as fungi inoculum to break the lignocellulose linkage of rice straw, which was solid-fermented at 25℃ to 30℃ for 8 weeks. The ruminal degradation of pangolagrass hay (PG), FRS, and RS were measured in situ for 96 hours in three dry Holstein cows, respectively. Effect of fungi fermented RS on milking performance was studied in feeding trials. A total of 21 Alpine goats a trial were divided into 3 groups: a control group in which PG accounted for 15% of the diet dry matter, and FRS or RS was used to replace the PG in the control group. Goats were fed twice a day under two 28-day trial in individual pens. Meanwhile, a 3×3 Latin square trial (14 days/period) was conducted to study the rumen digestion of three diets by using three fistulated dry goats. Rumen contents were collected for metabolite analyses every one to three hours on the last two days. Results: In situ study showed that fermentation could elevate the rumen degradable fraction and effective degradability of RS (p<0.05). Effective degradability of FRS dry matter was significantly increased from 29.5% of RS to 41.7%. Lactating trial results showed that dry matter intake and milk yield in the PG group and FRS group were similar and higher than those in RS group (p<0.05). The concentration of propionic acid and total volatile fatty acid in the RS group tended to be lower than those in PG group (p<0.10). There were no differences in rumen pH value and ammonia nitrogen level among the groups tested. Conclusion: Fermentation of rice straw by spent Pleurotus sajor-caju mushroom substrate could substantially enhance its feeding value to be equivalent to PG as an effective fiber source for dairy goat. The fermented rice straw is recommended to account for 15% in diet dry matter.

Determination of Optimal Conditions of Pressure Toasting on Legume Seeds for Dairy Deed Industry : I. Effects of Pressure Toasting on Nutritive Values of Lupinus albus in Lactating Dairy Cows

  • Yu, P.;Goelema, J.O.;Tamminga, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.8
    • /
    • pp.1205-1214
    • /
    • 1999
  • Whole lupinus albus seeds were pressure toasted at temperatures of 100, 118 and $136^{\circ}C$ for 3, 7, 15 and 30 min to study rumen degradation and post-rumen digestion and to determine optimal heating conditions for the Dutch dairy feed industry. In sacco nylon bag and mobile bag techniques were employed for rumen and intestine incubations to determine ruminal degradation characteristics and intestinal digestion of crude protein (CP) in 4 lactation rumen cannulated and 4 lactating intestinal cannulated Dutch dairy cows fed 47% hay and 53% concentrate according to Dutch dairy requirements. Measured rumen degradation characteristics were soluble fraction (S), undegradable fraction (U), potentially degradable fraction (D), lag time (T0) and rate of degradation (Kd) of insoluble but degradable fraction. Percentage bypass feed protein (BCP), ruminal microbial protein synthesized based on available nitrogen (N_MP) and that based on available energy (E_MP), true protein supplied to the small intestine (TPSI), truly absorbed BCP (ABCP), absorbed microbial protein (AVP) in the small intestine, endogenous protein losses in the digestion (ENDP), true digested protein in the small intestine (TAP or DVE in Dutch) and degraded protein balance (PDB or OEB in Dutch) were totally evaluated using the new Dutch DVE/OEB System. Pressure toasting decreased (p<0.001) rumen degradability of CP. It reduced S (p<0.05) and Kd (p=0.06), increased D (p<0.05) and U (p<0.01) but did not alter T0 (p>0.05), thus resulting in dramatically increased BCP (p<0.001) with increasing time and temperature from 73.7 (raw) up to 182.5 g/kg DM ($136^{\circ}C/15min$). Although rumen microbial protein synthesized based on available energy (E_MP) was reduced, true protein (microbial and bypass feed protein) supplied to the small intestine (TPSI) was increased (p<0.001) from 153.1 (raw) to 247.6 g/kg DM ($136^{\circ}C/15min$). Due to digestibility of BCP in the intestine not changing (p>0.05) average 87.8%, the absorbed BCP increased (p<0.001) from 62.3 (raw) to 153.7 g/kg DM ($136^{\circ}C/15min$). Therefore DVE value of true digested protein in the small intestine was significantly increased (p<0.001) from 118.9 (raw) to 197.0 g/kg DM ($136^{\circ}C/15min$) and OEB value of degraded protein balance was significantly reduced (p<0.001) from 147.2 (raw) to 63.1 g/kg DM ($136^{\circ}C/15min$). It was concluded that pressure toasting was effective in shifting degradation of CP of lupinus albus from the rumen to small intestine without changing intestinal digestion. Further studies are required on the degradation and digestion of individual amino acids and on the damaging effects of processing on amino acids, especially the first limiting amino acids.

Effects of Halogenated Compounds, Organic Acids and Unsaturated Fatty Acids on In vitro Methane Production and Fermentation Characteristics

  • Choi, N.J.;Lee, S.Y.;Sung, H.G.;Lee, S.C.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.9
    • /
    • pp.1255-1259
    • /
    • 2004
  • The objective of this study was to evaluate the effects of halogenated compounds, organic acids, unsaturated fatty acids and their mixtures on in vitro methane production and fermentative characteristics of mixed rumen microorganisms. Agents used in two in vitro experiments were bromoethanesulfonic acid (BES) and pyromellitic diimide (PMDI) as halogenated compound, fumarate and malate as organic acid, and linoleic acid and linolenic acid as unsaturated fatty acid sources. Ruminal fluid collected from a Holstein steer fed tall fescue and concentrate mixtures was incubated at $39^{\circ}C$ for 48 h with addition of those materials. Single supplementation of halogenated compounds, organic acids or unsaturated fatty acids decreased in vitro methane production (p<0.05). The second experiment was designed to investigate effects of combination of one of halogenated compounds and either organic acids or fatty acids on methane production. Lower concentration of methane and lower A:P ratio were observed with PMDI compared with BES (p<0.01). In general medium pH, VFA, total gas and hydrogen production, and dry matter degradability were affected by addition of the same compounds. In addition, PMDI+malate treatment resulted in the highest molar proportion of propionate, and lowest A:P ratio and methane production (p<0.01). Hydrogen production was highest in PMDI+linolenic acid and lowest in BES+malate treatment (p<0.01). PMDI+malate combination was the most recommendable in reducing methane production without too much influence on digestibility under conditions of present studies.

Effects of Defaunation on Fermentation Characteristics and Methane Production by Rumen Microbes In vitro When Incubated with Starchy Feed Sources

  • Qin, W.Z.;Li, C.Y.;Kim, J.K.;Ju, J.G.;Song, Man-K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.10
    • /
    • pp.1381-1388
    • /
    • 2012
  • An in vitro experiment was conducted to examine the effects of defaunation (removal of protozoa) on ruminal fermentation characteristics, $CH_4$ production and degradation by rumen microbes when incubated with cereal grains (corn, wheat and rye). Sodium lauryl sulfate as a defaunation reagent was added into the culture solution at a concentration of 0.000375 g/ml, and incubated anaerobically for up to 12 h at $39^{\circ}C$. Following defaunation, live protozoa in the culture solution were rarely observed by microscopic examination. A difference in pH was found among grains regardless of defaunation at all incubation times (p<0.01 to 0.001). Defaunation significantly decreased pH at 12 h (p<0.05) when rumen fluid was incubated with grains. Ammonia-N concentration was increased by defaunation for all grains at 6 h (p<0.05) and 12 h (p<0.05) incubation times. Total VFA concentration was increased by defaunation at 6 h (p<0.05) and 12 h (p<0.01) for all grains. Meanwhile, defaunation decreased acetate and butyrate proportions at 6 h (p<0.05, p<0.01) and 12 h (p<0.01, p<0.001), but increased the propionate proportion at 3 h, 6 h and 12 h incubation (p<0.01 to 0.001) for all grains. Defaunation increased in vitro effective degradability of DM (p<0.05). Production of total gas and $CO_2$ was decreased by defaunation for all grains at 1 h (p<0.05, p<0.05) and then increased at 6 h (p<0.05, p<0.05) and 12 h (p<0.05, p<0.05). $CH_4$ production was higher from faunation than from defaunation at all incubation times (p<0.05).

Substitution effects of rice for corn grain in total mixed ration on rumen fermentation characteristics and microbial community in vitro

  • Yoo, Daekyum;Hamid, Muhammad Mahboob Ali;Kim, Hanbeen;Moon, Joonbeom;Song, Jaeyong;Lee, Seyoung;Seo, Jakyeom
    • Journal of Animal Science and Technology
    • /
    • v.62 no.5
    • /
    • pp.638-647
    • /
    • 2020
  • This study determined the substitution effects of rice for corn as the main grain source in a total mixed ration (TMR). In vitro rumen fermentation characteristics and microbes were assessed using two experimental diets. Diets included 33% dry matter (DM) of either corn (Corn TMR) or rice grains (Rice TMR). In a 48-h in vitro incubation, DM digestibility (IVDMD), neutral detergent fiber degradability (IVNDFD), crude protein digestibility (IVCPD), volatile fatty acids (VFAs), pH and ammonia nitrogen (NH3-N) were estimated. Gas production has been calculated at 3, 6, 12, 24 and 48 h. Our results indicate that the gas production, VFAs, IVDMD, and IVNDFD of Rice TMR were higher than those of Corn TMR (p < 0.05). Ruminal pH and total fungi were significantly higher in Corn TMR (p < 0.05) than in Rice TMR; however, NH3-N and IVCPD were not affected by treatment type. In conclusion, substituting rice for corn at 33% DM in TMR appears to have no negative effects on in vitro rumen fermentation characteristics. Therefore, rice grains are an appropriate alternative energy source in early fattening stage diets of beef cattle.

In situ Ruminal and Intestinal Digestibility of Crude Protein and Amino Acids in By-product Feedstuffs

  • Baek, Youl Chang;Jeong, Jin young;Oh, Young Kyoon;Kim, Min Seok;Lee, Hyun jung;Jung, Hyun jung;Kim, Do hyung;Choi, Hyuck
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.2
    • /
    • pp.74-83
    • /
    • 2018
  • The objectives of this study was to evaluate the degradability and digestibility of crude protein (CP), rumen undegradable protein (RUP), and individual amino acids (AA) on six by-product feedstuffs (BPF) (rice bran, RB; wheat bran, WB; corn gluten feed, CGF; tofu residue, TR; spent mushroom substrate from Pleurotus ostreatus, SMSP; brewers grain, BG) as ruminants feed. Three Hanwoo steers (40 months old, $520{\pm}20.20kg$ of body weight) fitted with a permanent rumen cannula and T-shaped duodenal cannula were used to examine of the BPF using in situ nylon bag and mobile bag technique. The bran CGF (19.2%) and food-processing residue BG (19.7%) had the highest CP contents than other feeds. The RUP value of bran RB (39.7%) and food-processing residues SMSP (81.1%) were higher than other feeds. The intestinal digestion of CP was higher in bran RB (44.2%) and food-processing residues BG (40.5%) than other feeds. In addition, intestinal digestion of Met was higher in bran RB (55.7%) and food-processing residues BG (44.0%) than other feeds. Overall, these results suggest that RB and BG might be useful as main raw ingredients in feed for ruminants. Our results can be used as baseline data for ruminant ration formulation.

Histological Changes of Tissues and Cell Wall of Rice Straw Influenced by Chemical Pretreatments

  • Wang, Jia-Kun;Chen, Xiao-Lian;Liu, Jian-Xin;Wu, Yue-Ming;Ye, Jun-An
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.6
    • /
    • pp.824-830
    • /
    • 2008
  • Sodium hydroxide (SH) or ammonium bicarbonate (AB) were applied to rice straw to investigate the effects on histological change of stem tissue or cell wall before and after in sacco degradation using a scanning electron microscope (SEM) and a transmission electron microscope (TEM). The SEM revealed that, the parenchyma and vascular bundles were distorted by treatment with SH at 30 or 45 g/kg straw dry matter. Faultage between phloem of large vascular bundles and parenchyma occurred with further increasing SH to 60 or 75 g/kg. The cell wall in these stem tissues was crimped when observed by TEM. However, only parenchyma and large vascular tissues were slightly distorted in AB-treated stem. For untreated and AB-treated stems, the initiation of observable ruminal degradation of cell wall was prolonged from 12 h for inner parenchyma to 24 h for sclerenchyma and to 48 h for phloem of small vascular bundles, while the outer epidermis was intact even at 72 h. For SH-treated stem, however, the cell wall from all of the investigated tissues, epidermis, small vascular bundles, sclerenchyma, and parenchyma started to be degraded at 12 h incubation. These results indicate that SH treatment contracts rice straw stem leading to an improvement in rumen degradation, and that the degradation of SH-treated stem is bilateral from inner and outer surface simultaneously.

Impact of Three Categories of Supplements on In Sacco Ruminal Degradation of Urea-Treated and Untreated Straw Substrates

  • Srinivas, Bandla;Krishnamoorthy, U.;Jash, Soumitra
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.2
    • /
    • pp.195-204
    • /
    • 2002
  • The objective of this study was to examine the impact of three categories of supplements on intake and diet induced difference on degradation of straw substrates. Sixteen crossbred cattle fitted with rumen cannula were randomly divided into 4 equal groups. Animals were fed on wheat straw ad libitum without any supplement except mineral mixture (control; $T_1$) or supplemented with concentrate mixture (CS; $T_2$) or green Lucerne (GLS; $T_3$) or urea-molasses block lick (ULS; $T_4$). Total dry matter intake in $T_2$, $T_3$ and $T_4$ was increased by 70, 54 and 49%, respectively compared to $T_1$ which was only 1.55 kg/100 kg B.Wt. Other than control animals, straw intake was less on $T_3$ than $T_2$ or $T_4$. In Sacco degradation of untreated and urea treated wheat or paddy straw in different treatments indicated that the supplements had a significant (p<0.01) impact on rapidly soluble (A) and insoluble but potentially degradable (B) fractions of straw. Urea treatment increased fraction-A but, provision of supplement improved fraction-B also. Effective degradation (ED) of OM was better on $T_2$. Rate of degradation (C) of OM and CWC was dependent on diet and type of straw but hemicellulose and cellulose were related to latter factor only. ED of cell wall carbohydrates (CWC) was similar in $T_2$ and $T_4$ but higher than $T_3$. CS was more effective in improving the degradation of both untreated and urea treated straw while ULS was effective on the former only. CS had more impact on superior quality straw while contrary was true with ULS. Although GLS improved intake and degradability of untreated and urea treated straws, its bulkiness affected the straw intake compared to other supplements.

Utilization of Rice Straw and Different Treatments to Improve Its Feed Value for Ruminants: A Review

  • Sarnklong, C.;Cone, J.W.;Pellikaan, W.;Hendriks, W.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.5
    • /
    • pp.680-692
    • /
    • 2010
  • This paper gives an overview of the availability, nutritive quality, and possible strategies to improve the utilization of rice straw as a feed ingredient for ruminants. Approximately 80% of the rice in the world is grown by small-scale farmers in developing countries, including South East Asia. The large amount of rice straw as a by-product of the rice production is mainly used as a source of feed for ruminant livestock. Rice straw is rich in polysaccharides and has a high lignin and silica content, limiting voluntary intake and reducing degradability by ruminal microorganisms. Several methods to improve the utilization of rice straw by ruminants have been investigated in the past. However, some physical treatments are not practical because of the requirement for machinery or treatments are not economical feasible for the farmers. Chemical treatments, such as NaOH, $NH_3$ or urea, currently seem to be more practical for onfarm use. Alternative treatments to improve the nutritive value of rice straw are the use of ligninolytic fungi (white-rot fungi), with their extracellular ligninolytic enzymes, or specific enzymes degrading cellulose and/or hemicellulose. The use of fungi or enzyme treatments is expected to be a more practical and environmental-friendly approach for enhancing the nutritive value of rice straw and can be costeffective in the future. Using fungi and enzymes might be combined with the more classical chemical or physical treatments. However, available data on using fungi and enzymes for improving the quality of rice straw are relatively scarce.