Browse > Article
http://dx.doi.org/10.5713/ajas.2012.12240

Effects of Defaunation on Fermentation Characteristics and Methane Production by Rumen Microbes In vitro When Incubated with Starchy Feed Sources  

Qin, W.Z. (Department of Animal Science, Chungbuk National University)
Li, C.Y. (Department of Animal Scicence, Yanbian University)
Kim, J.K. (Department of Animal Science, Chungbuk National University)
Ju, J.G. (Department of Animal Science, Chungbuk National University)
Song, Man-K. (Department of Animal Science, Chungbuk National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.25, no.10, 2012 , pp. 1381-1388 More about this Journal
Abstract
An in vitro experiment was conducted to examine the effects of defaunation (removal of protozoa) on ruminal fermentation characteristics, $CH_4$ production and degradation by rumen microbes when incubated with cereal grains (corn, wheat and rye). Sodium lauryl sulfate as a defaunation reagent was added into the culture solution at a concentration of 0.000375 g/ml, and incubated anaerobically for up to 12 h at $39^{\circ}C$. Following defaunation, live protozoa in the culture solution were rarely observed by microscopic examination. A difference in pH was found among grains regardless of defaunation at all incubation times (p<0.01 to 0.001). Defaunation significantly decreased pH at 12 h (p<0.05) when rumen fluid was incubated with grains. Ammonia-N concentration was increased by defaunation for all grains at 6 h (p<0.05) and 12 h (p<0.05) incubation times. Total VFA concentration was increased by defaunation at 6 h (p<0.05) and 12 h (p<0.01) for all grains. Meanwhile, defaunation decreased acetate and butyrate proportions at 6 h (p<0.05, p<0.01) and 12 h (p<0.01, p<0.001), but increased the propionate proportion at 3 h, 6 h and 12 h incubation (p<0.01 to 0.001) for all grains. Defaunation increased in vitro effective degradability of DM (p<0.05). Production of total gas and $CO_2$ was decreased by defaunation for all grains at 1 h (p<0.05, p<0.05) and then increased at 6 h (p<0.05, p<0.05) and 12 h (p<0.05, p<0.05). $CH_4$ production was higher from faunation than from defaunation at all incubation times (p<0.05).
Keywords
Defaunation; Grains; Fermentation; Degradation; Total Gas; $CH_4$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Orskov, E. R. and I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. (Camb.) 92:499-506.   DOI
2 SAS Inc. 2002. SAS User's guide: Statistical analysis system institute, SAS Inc., Cary, NC, USA.
3 Kurihara, Y., J. M. Eadie, P. N. Hobson and S. O. Mann. 1968. Relationship between bacteria and ciliate protozoa in the sheep rumen. J. Gen. Microbiol. 5l:267-288.
4 Kurihara, Y., T. Takechi and F. Shibata. 1978. Relationship between bacteria and ciliate protozoa in the rumen of a sheep fed a purified diet. J. Agric. Sci. (Camb.) 90:373-382.   DOI
5 Lanzas, C., D. G. Fox and A. N. Pell. 2007. Digestion kinetics of dried cereal grains. Anim. Feed Sci. Technol. 136:265-280.   DOI   ScienceOn
6 Li, X. Z., C. G. Yan, S. H. Choi, R. J. Long, G. L. Jin and M. K. Song. 2009a. Effects of addition level and chemical type of propionate precursors in dicarboxylic acid pathway on fermentation characteristics and methane production by rumen microbes in vitro. Asian-Aust. J. Anim. Sci. 22:82-89.   DOI
7 Li, X. Z., R. J. Long, C. G. Yan, S. H. Choi, G. L. Jin and M. K. Song. 2010. Rumen microbial responses in fermentation characteristics and production of CLA and methane to linoleic acid in associated with malate or fumarate. Anim. Feed Sci. Technol. 155:132-139.   DOI   ScienceOn
8 Li, X. Z., S. H. Choi, G. L. Jin, C. G. Yan, R. J. Long, C. Y. Liang and M. K. Song. 2009b. Linolenic acid in association with malate or fumarate increased CLA production and reduced methane generation by rumen microbes. Asian-Aust. J. Anim. Sci. 22:819-826.   DOI
9 Mackie, R. I., F. M. C. Gilchrist, A. M. Roberts, P. E. Hannah and H. M. Schwartz. 1978. Microbiological and chemical changes in the rumen during the stepwise adaptation of sheep to high concentrate diets. J. Agric. Sci. (Camb.) 90:241-254.   DOI
10 McAllister, T. A. and K. J. Cheng. 1996. Microbial strategies in the ruminal digestion of cereal grains. Anim. Feed Sci. Technol. 62:29-36.   DOI   ScienceOn
11 McAllister, T. A., L. M. Rode, D. J. Major, K. J. Cheng and J. G. Buchanan-Smith. 1990c. Effect of ruminal microbial colonization on cereal gram digestion. Can. J. Anim. Sci. 70: 571-579.   DOI
12 Fawcett, J. K. and J. E. Scott. 1960. A rapid and precise method for the determination of urea. J. Clin. Pathol. 13:156-163.   DOI
13 Finlay, B. J., G. Esteban, K. J. Clarke, A. G. Williams, T. M. Embley and R. R. Hirt. 1994. Some rumen ciliates have endosymbiotic methanogens. FEMS. Microbiol. Lett. 117: 157-162.   DOI
14 Hale, W. H. 1973. Influence of processing on the utilization of grains (starch) by ruminant. J. Anim. Sci. 37:1075-1080.
15 Hegarty, R. S. 1999. Reducing rumen methane emissions through elimination of rumen protozoa. Aust. J. Agric. Res. 50:1321-1327.   DOI
16 Hristov, A. N., M. Ivan, L. M. Rode and T. A. McAllister. 2001. Fermentation characteristics and ruminal ciliate protozoal populations in cattle fed medium-or high- concentrate barley-based diets. J. Anim. Sci. 79:515-524.
17 Hungate, R. E. 1966. The Rumen and its Microbes. Academic press, New York.
18 Huntington, G. B. 1997. Starch utilization by ruminants: From basics to the bunk. J. Anim. Sci. 75:852-867.
19 Johnson, K. A. and D. E. Johnson. 1995. Methane emissions from cattle. J. Anim. Sci. 73:2483-2492.
20 Huntington, G. B., D. L. Harmon and C. J. Richards. 2006. Site, rates, and limits of starch digestion and glucose metabolism in growing cattle. J. Anim. Sci. 84:14-24.
21 Kilta, P. T., G. W. Mathison and T. W. Fenton. 1996. Effect of alfalfa root saponins on digestive function in sheep. J. Anim. Sci. 74:1144-1156.
22 Kiran, D. and T. Mutsvangwa. 2010. Effects of partial ruminal defaunation on urea-nitrogen recycling, nitrogen metabolism, and microbial nitrogen supply in growing lambs fed low or high dietary crude protein concentrations. J. Anim. Sci. 88: 1034-1047.   DOI   ScienceOn
23 Becker, P. M. and P. G. Wikselaar. 2011. Effects of plant antioxidants and natural vicinal diketones on methane production, studied in vitro with rumen fluid and a polylactate as maintenance substrate. Anim. Feed Sci. Technol. 170:201-208.   DOI   ScienceOn
24 Castillo, C., J. Benedito, J. Mendez, V. Pereira, M. Lopez-Alonso, M. Miranda and J. Hernandez. 2004. Organic acids as a substitute for monensin in diets for beef cattle. Anim. Feed Sci. Technol. 115:101-116.   DOI   ScienceOn
25 Chai, W. Z., A. H. Van Gelder and J. W. Cone. 2004. Relationship between gas production and starch degradation in feed samples. Anim. Feed Sci. Technol. 114:195-204.   DOI   ScienceOn
26 Cheng, K. J., C. W. Forsberg, H. Minato and J. W. Costerton. 1991. Microbial ecology and physiology of feed degradation within the rumen. In: Physiological Aspects of Digestion and Metabolism in Ruminants (Ed. R. Kawashima). Academic Press, Toronto, Ont., pp. 595-624.
27 Van Soest, P. J., J. B.Robertson and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597.   DOI   ScienceOn
28 Schonhusen, U., R. Zitnan, S. Kuhla, W. Jentsch, M. Derno and J. Voiqt. 2003. Effects of protozoa on methane production in rumen and hindgut of calves around time of weaning. Arch. Anim. Nutr. 57:279-295.   DOI   ScienceOn
29 Steel, R. G. D. and J. H. Torrie. 1980. Principles and procedures of statistics. Mcgraw Hill Book Co., NY, USA.
30 Swan, C. G., J. G. P. Bowman, J. M. Martin and M. J. Giroux. 2006. Incresed puroindoline levels slow ruminal digestion of wheat (Triticum aestivum L.) starch by cattle. J. Anim. Sci. 84:641-650.
31 Williams, A. G. and G. S. Coleman. 1992. The Rumen Protozoa. Springer-Verlag, New York, USA.
32 Williams, A. G. and S. E.Withers. 1991. Effect of ciliate protozoa on the activity of polysaccharide-degrading enzymes and fibre breakdown in the rumen ecosystem. J. Appl. Microbiol.70: 144-155.   DOI
33 Wina, E., S. Muetzel and K. Becker. 2005. The impact of saponins or saponin containing plant materials on ruminant production- A Review. J. Agric. Food. Chem. 53:8093-8105.   DOI   ScienceOn
34 Yanez-Ruiz, D. R., B. Macias, E. Pinloche and C. Newbold. 2010. The persistence of bacterial and methanogenic archaeal communities residing in the rumen of yong lambs. FEMS. Microbiol. Ecol. 72:272-278.   DOI   ScienceOn
35 Eugene, M., H. Archimede and D. Sauvant. 2004. Quantitative meta-analysis on the effects of defaunation of the rumen on growth, intake and digestion in ruminants. Livest. Sci. 85:81-97.   DOI   ScienceOn
36 Coleman, G. S. 1986. The amylase activity of 14 species of entodiniomorphid protozoa and the distribution of amylase in rumen digesta fractions of sheep containing no protozoa or one of seven different protozoal populations. J. Agric. Sci. (Camb.) 107:709-721.   DOI
37 Coleman, G. S. 1992. The rate of uptake and metabolism of starch grains and cellulose particles by Entodinium species, Eudiplodinium maggi, some other entodinomorphid protozoa and natural protozoal populations taken from the ovine rumen. J. Appl. Microbiol. 73:507-513.   DOI
38 Dohme, F., A. Machmüller, B. L. Estermann, P. Pfister, A. Wasserfallen and M. Kreuzer. 1999. The role of the rumen ciliate protozoa for methane suppression caused by coconut oil. Lett. Appl. Microbiol. 29:187-192.   DOI
39 Mohammed, N., N. Ajisaka, Z. A. Lila, K. Hara, K. Mikuni, K. Hara, S. Kanda and H. Itabashi. 2004. Effect of Japanese horseradish oil on methane production and ruminal fermentation in vitro and in steers. J. Anim. Sci. 82:1839-1846.
40 Mendoza, G. D., R. A. Britton and R. A. Stock. 1993. Influence of ruminal protozoa on site and extent of starch digestion and ruminal fermentation. J. Anim. Sci. 71:1572-1578.
41 Morgavi, D. P., E. Forano, C. Martin and C. J. Newbold. 2010. Microbial ecosystem and methanogenesis in ruminants. Animal 4:1024-1036.   DOI   ScienceOn
42 Morgavi, D. P., J. P. Jouany and C. Martin. 2008. Changes in methane emission and rumen fermentation parameters induced by refaunation in sheep. Aust. J. Exp. Agric. 48:69-72.   DOI   ScienceOn
43 Nagaraja, T. G., G. Towne and A. A. Beharka. 1992. Moderation of ruminal fermentation by ciliated protozoa in cattle fed a highgrain diet. Appl. Environ. Microbiol. 58:2410-2414.
44 Newbold, C. J., B. Lassalas and J. P. Jouany. 1995. The importance of methanogens associated with ciliate protozoa in ruminal methane production in vitro. Lett. Appl. Microbiol. 27:230-234.
45 Offner, A., A. Bach and D. Sauvant. 2003. Quantitative review of in situ starch degradation in the rumen. Anim. Feed Sci. Technol. 106:81-93.   DOI   ScienceOn
46 Orskov, E. R. 1986. Starch digestion and utilization in ruminants. J. Anim. Sci. 63:1624-1633.
47 AOAC. 1995. Official methods of analsis, 13th edn. Association of official analytical chemists, Washington, DC, USA.
48 Abel, H., B. Schroder, P. Lebzien and G. Flachowsky. 2006. Effects of defaunation on fermentation characteristics and biotin balance in an artificial rumen-simulation system (RUSITEC) receiving diets with different amounts and types of cereal. Br. J. Nutr. 95:99-104.   DOI   ScienceOn