• Title/Summary/Keyword: rule accuracy

Search Result 499, Processing Time 0.035 seconds

Practical setup time implementation in the roll-based manufacturing practice having print operations (인쇄공정이 있는 Roll 기반 제조업에서의 실용적 Setup Time 적용 방안)

  • Bae, Jae-Ho;Wang, Gi-Nam
    • IE interfaces
    • /
    • v.22 no.1
    • /
    • pp.85-94
    • /
    • 2009
  • Nowadays, most of the major manufacturing companies prepare their manufacturing schedule using package based solutions. Even though the accuracy of the detail scheduling result is high at implementation, however, it is low during maintenance period. The main cause of low accuracy during maintenance period is due to difficulties in maintaining the accurate level of master data. In this paper, we propose to easily maintain setup time, which is one of the most important factors required in master data to achieve good scheduling result, after changing job. This paper is mainly focused on how to deduce the factors that influence the setup time in a roll-based manufacturing field with print operations. For this purpose, we employed rule based algorithm and applied for deciding setup time for the existing product items. Likewise, it can be applied to new items without any complex setup procedures, and, finally, it displays the result of the real setup-time and calculated setup-time.

Evaluation of the Pi-SAR Data for Land Cover Discrimination

  • Amarsaikhan, D.;Sato, M.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1087-1089
    • /
    • 2003
  • The aim of this study is to evaluate the Pi-SAR data for land cover discrimination using a standard method. For this purpose, the original polarization and Pauli components of the Pi-SAR X-band and L-band data are used and the results are compared. As a method for the land cover discrimination, the traditional method of statistical maximum likelihood decision rule is selected. To increase the accuracy of the classification result, different spatial thresholds based on local knowledge are determined and used for the actual classification process. Moreover, to reduce the speckle noise and increase the spatial homogeneity of different classes of objects, a speckle suppression filter is applied to the original Pi-SAR data before applying the classification decision rule. Overall, the research indicated that the original Pi-SAR polarization components can be successfully used for separation of different land cover types without taking taking special polarization transformations.

  • PDF

Dissolved Gas Analysis Using the Dempster-Shafer Rule of Combination (Dempster-Shafer 결합 규칙을 이용한 유중 가스 분석법)

  • Yoon, Yong-Han;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.301-303
    • /
    • 1998
  • This paper presents a new approach to diagnose and detect faults in oil-filled power transformers based on various dissolved gas analyses. A theoretic fuzzy information model is introduced, An inference scheme which yields the 'most' consistent conclusion proposed. A framework is established that allows various dissolved gas analyses to be combined in a systematic way such as the Dempster-Shafer rule. Good diagnosis accuracy is obtained with the proposed approach.

  • PDF

Conservative Upwind Correction Method for Scalar Linear Hyperbolic Equations

  • Kim, Sang Dong;Lee, Yong Hun;Shin, Byeong Chun
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.2
    • /
    • pp.309-322
    • /
    • 2021
  • A conservative scheme for solving scalar hyperbolic equations is presented using a quadrature rule and an ODE solver. This numerical scheme consists of an upwind part, plus a correction part which is derived by introducing a new variable for the given hyperbolic equation. Furthermore, the stability and accuracy of the derived algorithm is shown with numerous computations.

NUMERICAL EVALUATION OF CAUCHY PRINCIPAL VALUE INTEGRALS USING A PARAMETRIC RATIONAL TRANSFORMATION

  • Beong In Yun
    • The Pure and Applied Mathematics
    • /
    • v.30 no.4
    • /
    • pp.347-355
    • /
    • 2023
  • For numerical evaluation of Cauchy principal value integrals, we present a simple rational function with a parameter satisfying some reasonable conditions. The proposed rational function is employed in coordinate transformation for accelerating the accuracy of the Gauss quadrature rule. The efficiency of the proposed rational transformation method is demonstrated by the numerical result of a selected test example.

Effect of Market Basket Size on the Accuracy of Association Rule Measures (장바구니 크기가 연관규칙 척도의 정확성에 미치는 영향)

  • Kim, Nam-Gyu
    • Asia pacific journal of information systems
    • /
    • v.18 no.2
    • /
    • pp.95-114
    • /
    • 2008
  • Recent interests in data mining result from the expansion of the amount of business data and the growing business needs for extracting valuable knowledge from the data and then utilizing it for decision making process. In particular, recent advances in association rule mining techniques enable us to acquire knowledge concerning sales patterns among individual items from the voluminous transactional data. Certainly, one of the major purposes of association rule mining is to utilize acquired knowledge in providing marketing strategies such as cross-selling, sales promotion, and shelf-space allocation. In spite of the potential applicability of association rule mining, unfortunately, it is not often the case that the marketing mix acquired from data mining leads to the realized profit. The main difficulty of mining-based profit realization can be found in the fact that tremendous numbers of patterns are discovered by the association rule mining. Due to the many patterns, data mining experts should perform additional mining of the results of initial mining in order to extract only actionable and profitable knowledge, which exhausts much time and costs. In the literature, a number of interestingness measures have been devised for estimating discovered patterns. Most of the measures can be directly calculated from what is known as a contingency table, which summarizes the sales frequencies of exclusive items or itemsets. A contingency table can provide brief insights into the relationship between two or more itemsets of concern. However, it is important to note that some useful information concerning sales transactions may be lost when a contingency table is constructed. For instance, information regarding the size of each market basket(i.e., the number of items in each transaction) cannot be described in a contingency table. It is natural that a larger basket has a tendency to consist of more sales patterns. Therefore, if two itemsets are sold together in a very large basket, it can be expected that the basket contains two or more patterns and that the two itemsets belong to mutually different patterns. Therefore, we should classify frequent itemset into two categories, inter-pattern co-occurrence and intra-pattern co-occurrence, and investigate the effect of the market basket size on the two categories. This notion implies that any interestingness measures for association rules should consider not only the total frequency of target itemsets but also the size of each basket. There have been many attempts on analyzing various interestingness measures in the literature. Most of them have conducted qualitative comparison among various measures. The studies proposed desirable properties of interestingness measures and then surveyed how many properties are obeyed by each measure. However, relatively few attentions have been made on evaluating how well the patterns discovered by each measure are regarded to be valuable in the real world. In this paper, attempts are made to propose two notions regarding association rule measures. First, a quantitative criterion for estimating accuracy of association rule measures is presented. According to this criterion, a measure can be considered to be accurate if it assigns high scores to meaningful patterns that actually exist and low scores to arbitrary patterns that co-occur by coincidence. Next, complementary measures are presented to improve the accuracy of traditional association rule measures. By adopting the factor of market basket size, the devised measures attempt to discriminate the co-occurrence of itemsets in a small basket from another co-occurrence in a large basket. Intensive computer simulations under various workloads were performed in order to analyze the accuracy of various interestingness measures including traditional measures and the proposed measures.

An N-version Learning Approach to Enhance the Prediction Accuracy of Classification Systems in Genetics-based Learning Environments (유전학 기반 학습 환경하에서 분류 시스템의 성능 향상을 위한 엔-버전 학습법)

  • Kim, Yeong-Jun;Hong, Cheol-Ui
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.7
    • /
    • pp.1841-1848
    • /
    • 1999
  • DELVAUX is a genetics-based inductive learning system that learns a rule-set, which consists of Bayesian classification rules, from sets of examples for classification tasks. One problem that DELVAUX faces in the rule-set learning process is that, occasionally, the learning process ends with a local optimum without finding the best rule-set. Another problem is that, occasionally, the learning process ends with a rule-set that performs well for the training examples but not for the unknown testing examples. This paper describes efforts to alleviate these two problems centering on the N-version learning approach, in which multiple rule-sets are learning and a classification system is constructed with those learned rule-sets to improve the overall performance of a classification system. For the implementation of the N-version learning approach, we propose a decision-making scheme that can draw a decision using multiple rule-sets and a genetic algorithm approach to find a good combination of rule-sets from a set of learned rule-sets. We also present empirical results that evaluate the effect of the N-version learning approach in the DELVAUX learning environment.

  • PDF

Plurality Rule-based Density and Correlation Coefficient-based Clustering for K-NN

  • Aung, Swe Swe;Nagayama, Itaru;Tamaki, Shiro
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.3
    • /
    • pp.183-192
    • /
    • 2017
  • k-nearest neighbor (K-NN) is a well-known classification algorithm, being feature space-based on nearest-neighbor training examples in machine learning. However, K-NN, as we know, is a lazy learning method. Therefore, if a K-NN-based system very much depends on a huge amount of history data to achieve an accurate prediction result for a particular task, it gradually faces a processing-time performance-degradation problem. We have noticed that many researchers usually contemplate only classification accuracy. But estimation speed also plays an essential role in real-time prediction systems. To compensate for this weakness, this paper proposes correlation coefficient-based clustering (CCC) aimed at upgrading the performance of K-NN by leveraging processing-time speed and plurality rule-based density (PRD) to improve estimation accuracy. For experiments, we used real datasets (on breast cancer, breast tissue, heart, and the iris) from the University of California, Irvine (UCI) machine learning repository. Moreover, real traffic data collected from Ojana Junction, Route 58, Okinawa, Japan, was also utilized to lay bare the efficiency of this method. By using these datasets, we proved better processing-time performance with the new approach by comparing it with classical K-NN. Besides, via experiments on real-world datasets, we compared the prediction accuracy of our approach with density peaks clustering based on K-NN and principal component analysis (DPC-KNN-PCA).

A Study on the Earthwork Calculation Using Photogrammetry (사진측량을 이용한 토공량 결정에 관한 연구)

  • 유복모;유용택;이변직
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.8 no.1
    • /
    • pp.41-50
    • /
    • 1990
  • The purpose of this thesis lies in proving the practicality of photogrammetry and in promoting photogrammetry in earthwork which plays a major role in civil engineering projects. Analysis of accuracy in the determination of ammount of earthework was done by applying interpolation methods in digital terrain model. As a result of analysis of the data acquisition method, in cross-section method produced acceptable accuracy from Simpson's three-eighths rule and prismoidal rule. In results DTM, we have obtained the fact that earthwork calculation accuracy was increased by applying two or more interpolation methods. Therefore, the method by digital terrain model using aerial photograph has proved to be more efficient.

  • PDF

Genetically Optimized Rule-based Fuzzy Polynomial Neural Networks (진화론적 최적 규칙베이스 퍼지다항식 뉴럴네트워크)

  • Park Byoung-Jun;Kim Hyun-Ki;Oh Sung-Kwun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.2
    • /
    • pp.127-136
    • /
    • 2005
  • In this paper, a new architecture and comprehensive design methodology of genetically optimized Rule-based Fuzzy Polynomial Neural Networks(gRFPNN) are introduced and a series of numeric experiments are carried out. The architecture of the resulting gRFPNN results from asynergistic usage of the hybrid system generated by combining rule-based Fuzzy Neural Networks(FNN) with polynomial neural networks (PNN). FNN contributes to the formation of the premise part of the overall rule-based structure of the gRFPNN. The consequence part of the gRFPNN is designed using PNNs. At the premise part of the gRFPNN, FNN exploits fuzzy set based approach designed by using space partitioning in terms of individual variables and comes in two fuzzy inference forms: simplified and linear. As the consequence part of the gRFPNN, the development of the genetically optimized PNN dwells on two general optimization mechanism: the structural optimization is realized via GAs whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the gRFPNN, the models are experimented with the use of several representative numerical examples. A comparative analysis shows that the proposed gRFPNN are models with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.