• 제목/요약/키워드: rubber-tired gantry crane

검색결과 16건 처리시간 0.023초

컨테이너 하역작업 시 갠트리 크레인의 유연다물체 동역학 모델링 및 윤하중 해석 (Multi-flexible Dynamic Modeling and Wheel Load Analysis of a Rubber Tired Gantry Crane in Container Cargo Working)

  • 김정윤;김진곤
    • 한국전산구조공학회논문집
    • /
    • 제27권5호
    • /
    • pp.379-384
    • /
    • 2014
  • 본 논문은 갠트리 크레인의 설계를 위해 컨테이너 하역작업 시 특정하중 조건하의 RTGC(Rubber Tired Gantry Crane)의 동적거동과 그에 따른 윤하중을 분석한 내용을 기술하고 있다. 먼저 RTGC의 동적거동을 살펴보기 위해 거대 구조물인 크레인의 유한요소 모델을 개발하고 고유진동수와 고유모드의 모달시험결과를 이용하여 유한요소모델을 검증하였다. RTGC의 기타 부속품은 3차원 CAD모델링을 통해 다물체 동역학해석 소프트웨어인 ADAMS에서 강체로 모델링하였다. 본 연구에서 하중 조건은 일반적인 컨테이너의 이송조건(OP1)과 외부부하조건 없이 단순히 트롤리를 이용하여 컨테이너를 하역하는 2가지 경우로 고려하였다. 해석 결과 RTGC의 컨테이너 작업 시 발생하는 크레인의 진동은 거대 구조물의 강성과 변형에 주로 기인함을 확인하였으며 이러한 크레인의 진동은 RTGC의 움직임을 발생시켜 컨테이너 하역작업 불능 등의 거동을 발생시킬 수 있음을 분석할 수 있었다.

슬립을 고려한 트랜스퍼 크레인의 주행제어에 관한 연구 (A Study on the Tracking Control of a Transfer Crane with Tire Slip)

  • 정지현;이동석;김영복
    • 제어로봇시스템학회논문지
    • /
    • 제16권12호
    • /
    • pp.1212-1219
    • /
    • 2010
  • The most important thing in the container terminal is to handle the cargo effectively in the limited time. To achieve this object, many strategies have been introduced and applied to. If we consider the technical trends and environment of the automated container terminal, it is necessary that the systems for cargo handling are equipped with more intelligent control technologies. To cope with this tendency, from the middle of the 1990's, the automated RMGC (Rail-Mounted Gantry Crane) and RTGC (Rubber-Tired Gantry Crane) have been developed and widely used to handle containers in the yards. Recently, in these cranes, the many equipments like CCD cameras and sensors are mounted to cope with the automated terminal environment. If we want to obtain more efficient handling performance, the modelling, tracking control, anti-sway system design, skew motion suppressing and complicated motion control problems must be considered in the control system design and application process. Considering these problems, in this paper, the system modelling with the tire slip and a tracking control approach are proposed. Especially, we design the tracking control system based on the 2DOF servosystem design approach to cope with undesirable disturbance input. The experiment results show the desirable performance and usefulness of the designed control system.

트랜스퍼 크레인의 모델링 및 고정도 주행제어기 설계에 관한 연구 (Modelling and Accurate Tracking Controller Design of A Transfer Crane)

  • 김영복;서진호;이권순
    • 한국해양공학회지
    • /
    • 제20권6호
    • /
    • pp.114-122
    • /
    • 2006
  • The most important thing in the container terminal is to handle the cargo effectively in a limited time. To achieve this objective, many strategies have been introduced and applied. If we consider the automated container terminal, it is necessary that the cargo handling equipment is equipped with more intelligent control systems. From the middle of the 1990s, an automated rail-mounted gantry crane (RMGC) and rubber-tired gantry crane (RTG) have been developed and widely used to handle containers in the yards. Recently, in these cranes, equipment like CCD cameras and sensors have been mounted to cope with the automated terminal environment. In this paper, we try to support the development of more intelligent automated cranes that make the cargo handling be performed effectively in the yards. For this plant, we ought to consider modeling, tracking control, anti-sway system design, skew motion suppressionand complicated motion control and suppressing problems. In this paper, the system modeling and a tracking control approach are discussed, based on a two-degree-of-freedom (2DOF) servo-system design. From the simulation results, the good control performance of the designed control system is evaluated.

트랜스퍼 크레인의 모델링 및 고정도 주행제어에 관한 연구 (Modelling and Accurate Tracking Control of a Transfer Crane)

  • 최문석;김영복;서진호;이권순
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.485-488
    • /
    • 2006
  • The most important thing in the container terminal is to handle the cargo effectively in the limited time. To achieve this object, many strategies have been introduced and applied to. If we consider the automated container terminal, it is necessary that the cargo handling equipments are equipped with more intelligent control systems. From the middle of the 1990's, an automated rail-mounted gantry crane(RMGC) and rubber-tired gantry crane(RTG) have been developed and widely used to handle containers in the yards. Recently, in these cranes, the many equipments like CCD cameras and sensors are mounted to cope with the automated terminal environment. In this paper, we try to support the development of more intelligent automated cranes which make the cargo handling be performed effectively in the yards. For this plant, the modelling, tracking control, anti-sway system design, skew motion suppressing and complicated motion control and suppressing problems must be considered. In this paper, the system modelling and a tracking control approach are discussed based on two-degree-of-freedom (2DOF) servosystem design.

  • PDF

트랜스퍼 크레인의 주행제어에 관한 연구 : 관측기 설계 및 실험적 연구 (A Study on the Tracking Control of a Transfer Crane : Observer Design and Experimental Study)

  • 최문석;서진호;이권순;김영복
    • 제어로봇시스템학회논문지
    • /
    • 제13권1호
    • /
    • pp.26-32
    • /
    • 2007
  • The most important thing in the container terminal is to handle the cargo effectively in the limited time. To achieve this object, many strategies have been introduced and applied to. If we consider the automated container terminal, it is necessary that the cargo handling equipments are equipped with more intelligent control systems. From the middle of the 1990's, an automated rail-mounted gantry crane(RMGC) and rubber-tired gantry crane(RTG) have been developed and widely used to handle containers in the yards. Recently, in these cranes, the many equipments like CCD cameras and sensors are mounted to cope with the automated terminal environment. In this paper, we try to support the development of more intelligent automated cranes which make the cargo handling be performed effectively in the yards. For this plant, the modelling, tracking control, anti-sway system design, skew motion suppressing and complicated motion control and suppressing problems must be considered. In this paper, the system modelling and a tracking control approach are discussed. And, we design the tracking control system incorporating an observer based on the 2DOF servosystem design approach to obtain the informations of the states. The experiment results show the usefulness of the designed control system.

주행상태에서의 가이드라인 계측 시스템 개발에 관한 연구 (A Study on the Development of Guide Line Measurement System in the Driving Condition)

  • 김영복
    • 동력기계공학회지
    • /
    • 제15권5호
    • /
    • pp.91-96
    • /
    • 2011
  • The handling ability of containers at the terminal strongly depends on the performance of the cargo handling system such as RTGC(Rubber Tired Gantry Crane) and RMGC(Rail Mounted Gantry Crane). This paper introduces a guide line measurement system on the operating condition, in which two camera are installed to detect the guide line. Because the line tracking is the basic technique for control system design of RTGC, it is necessary to develop a useful and reliable measurement system. If the displacement and angle of the RTGC relative to a guide line as the trajectory to follow is obtained, the position of RTGC is automatically calculated. Therefore, in this paper, a camera-based measurement system is introduced. The proposed measurement system is robust against light fluctuation and cracks of the guide line. This system consists of two camera and a PC which are installed at the lower side of the RTGC. Two edges of the guide line are detected from an input image taken by the cameras in the moving state, and these positions are determined in a Hough parameter space by using the Hough transformation method. From the experimental results, the accuracy and usefulness of the proposed system is evaluated by comparing other instruments.

트랜스퍼 크레인의 고정도 주행제어에 관한 연구 : 2자유도 서보계 설계법을 이용한 제어계 설계 및 실험적 연구 (An Experimental Study on the Accurate Tracking Control of a Transfer Crane Based on the 2DOF Servosystem Design Approach)

  • 김영복;이권순;한승훈
    • 한국해양공학회지
    • /
    • 제20권5호
    • /
    • pp.57-62
    • /
    • 2006
  • The most important thing in acontainer terminal is to handle the cargo effectively in the limited time available. To achieve this objective, many strategies have been introduced and applied. To create an automated container terminal, it is necessary for the cargo handling equipment to be equipped with more intelligent control systems. From the middle of the 1990's, automated rail-mounted gantry cranes (RMGC) and rubber-tired gantry cranes (RTG) have been widely used to handle containers in yards. Recently, many pieces of equipment, like CCD cameras and sensors, have beenmounted in these cranes to cope with the automated terminal environment. In this paper, we try to support the development of more intelligent automated cranes, which allow for more effective cargo handling in yards. For this purpose, the modeling, tracking control, anti-sway system design, skew motion suppressing, and complicated motion control and suppressing problems must be considered. Especially, in this paper, the system modeling and a new tracking control approach are discussed, and an experimental study is performed based on a two-degree-of-freedom (2DOF) servosystem design.

트랜스퍼 크레인의 이송위치제어를 위한 서보계 설계 : 가중 $H_{\infty}$ 오차사양을 만족하는 동일차원 관측기 설계 (Tracking Control System Design for the Transfer Crane : Design of Full-order Observer with Weighted $H_{\infty}$ Error Bound)

  • 김영복;정황훈;양주호
    • 동력기계공학회지
    • /
    • 제12권6호
    • /
    • pp.42-49
    • /
    • 2008
  • The most important job in the container terminal area is to handle the cargo effectively in the limited time. To achieve this object, many strategies have been introduced and applied to. If we consider the automated container terminal, it is necessary that the cargo handling equipments are equipped with more intelligent control systems. From the middle of the 1990's, an automated rail-mounted gantry crane(RMGC) and rubber-tired gantry crane(RTG) have been developed and widely used to handle containers in the yards. Recently, in these cranes, the many equipments like CCD cameras and sensors are mounted to cope with the automated terminal environment. In this paper, we try to support the development of more intelligent automated cranes which make the cargo handling be performed effectively in the yards. For this plant, the modelling, tracking control, anti-sway system design, skew motion suppressing and complicated motion control and suppressing problems must be considered. Especially, in this paper, the system modelling and tracking control approach are discussed. And, we design the tracking control system incorporating an observer based on the 2DOF servo system design approach to obtain the desired state informations. In the case of observer design, a weighted $H_{\infty}$ error bound approach for a state estimator is considered. Based on an algebraic Riccati equation(inequality) approach, a necessary and sufficient condition for the existence of a full-order estimator which satisfies the weighted $H_{\infty}$ error bound is introduced. Where, the condition for existence of the estimator is denoted by a Linear Matrix Inequality(LMI) which gives an optimized solution and observer gain. Based on this result, we apply it to the tracking control system design for the transfer crane.

  • PDF

RTGC의 모델링 및 주행제어기 설계에 관한 연구 (A Study on Modelling and Tracking Control System Design of RTGC(Rubber-Tired Gantry Crane))

  • 정지현;이동석;정정순;김영복
    • 한국항해항만학회지
    • /
    • 제34권6호
    • /
    • pp.479-485
    • /
    • 2010
  • 컨테이너의 신속한 이송 및 처리는 작업시간 단축에 의한 비용절감을 의미하므로 항만에서는 가능한 작업효율을 향상시키기 위해 다양한 노력이 추진되고 있다. 1990년대 중반부터 RMGC 및 RTGC 등의 크레인이 개발되어 컨테이너 이송 및 적재를 위한 필수장비로 널리 이용되고 있다. 특히 RTGC는 타이어 구동방식이므로 주행환경에 크게 제약을 받지 않는 장점도 있으나, 타이어 슬립, 타이어에 의한 샤시의 기울어짐 등 설정된 경로를 고정도로 주행해야 하는 목적달성에 장애가 되는 요인도 많아 레일 위를 주행하는 RMGC에 비해 자동화가 용이하지 않다. 이것은 무인 RTGC 시스템 구축을 어렵게 하는 가장 큰 요인이 되어 이와 관련한 기술개발 또한 미비한 수준에 이르고 있다. 따라서 본 논문에서 RTGC의 무인자동화에 있어서 가장 기초단계라고 볼 수 있는 수학적 모델링을 기반으로 한 고정도 주행제어기를 설계하고자 한다. 먼저 제어대상인 RTGC의 주행에 따른 운동특성을 분석하여 모델링을 수행한다. 기본적인 주행성능을 달성하기 위한 주행제어기를 설계하고 시뮬레이션을 통해 설계된 제어기의 유용성을 확인하도록 한다.

실외 주행환경을 고려한 카메라 기반의 RTGC 위치계측시스템 개발 (Development of a Camera-based Position Measurement System for the RTGC with Environment Conditions)

  • ;김영복;최용운
    • 제어로봇시스템학회논문지
    • /
    • 제17권9호
    • /
    • pp.892-896
    • /
    • 2011
  • This paper describes a camera-based position measurement system for automatic tracking control of a rubber Tired Gantry Crane (RTGC). An automatic tracking control of RTGC depends on the ability to measure its displacement and angle from a guide line that the RTGC has to follow. The measurement system proposed in this paper is composed of a camera and a PC that are mounted on the right upper between front and rear tires of the RTGC's side. The measurement accuracy of the system is affected by disturbances such as cracks and stains of the guide line, shadows, and halation from the light fluctuation. To overcome the disturbances, both side edges of the guide line are detected as two straight lines from an input image taken by the camera, and parameters of the straight lines are determined by using Hough transform. The displacement and angle of the RTGC from the guide line can be obtained from these parameters with the robustness against the disturbances. From the experiments with the disturbances, we found the accurate displacement and the angle from the guide line that have the standard deviations of 0.95 pixels and 0.22 degrees, respectively.