• Title/Summary/Keyword: rubber material

Search Result 906, Processing Time 0.026 seconds

Finite Element Analysis and Evaluation of Rubber Spring for Railway Vehicle (철도차량용 고무스프링 특성해석 및 평가)

  • Woo, Chang-Su;Kim, Wan-Doo;Choi, Byung-Ik;Park, Hyun-Sung;Kim, Kyung-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.773-778
    • /
    • 2009
  • Chevron rubber springs are used in primary suspensions for rail vehicle. Chevron rubber spring have function which reduce vibration and noise, support load carried in operation of rail vehicle. Prediction and evaluation of characteristics are very important in design procedure to assure the safety and reliability of the rubber spring. The computer simulation using the nonlinear finite element analysis program executed to predict and evaluate the load capacity and stiffness for the chevron spring. The non-linear properties of rubber which are described as strain energy functions are important parameters. These are determined by material tests which are uniaxial tension, equi-biaxial tension and shear test. The appropriate shape and material properties are proposed to adjust the required characteristics of rubber springs in the three modes of flexibility.

Software and Hardware Development of Micro-indenter for Material Property Evaluation of Hyper-Elastic Rubber (초탄성고무 물성평가용 미소압입시험기의 소프트웨어 및 하드웨어 개발)

  • Lee, Hyung-Yil;Kim, Dong-Wook;Lee, Jin-Haeng;Nahm, Seung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.816-825
    • /
    • 2004
  • In this work, effects of hyper-elastic rubber material properties on the indentation load-deflection curve and subindenter deformation are examined via finite element (FE) analyses. An optimal location for data analysis is selected, which features maximum strain energy density and negligible frictional effect. We then contrive two normalized functions, which map an indentation load vs. deflection curve into a strain energy density vs. first invariant curve. From the strain energy density vs. first invariant curve, we can extract the rubber material properties. This new spherical indentation approach produces the rubber material properties in a manner more effective than the common uniaxial tensile/com-pression tests. The indentation approach successfully measures the rubber material properties and the corresponding nominal stress-strain curve with an average error less than 3%.

A Study on Surface Treatment for Rubber Materials with Low Friction Factor

  • Li, Xiang-Xu;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.51 no.1
    • /
    • pp.43-48
    • /
    • 2016
  • Multi-Surface (MS) treatment is a new technique of surface treatment to reduce the static friction factor on the surface of rubber. MS treatments include 4 methods which names are MS-V (UV-irradiation on the rubber surface), MS-M (doing the chemical reaction with double bond of rubber), MS-Q (dilution of rubber surface by silicone surfactant), and MS-P (coating and heating of rubber surface). The experiment and test of every MS-treatment had been carried out using acrylonitrile-butadiene rubber (NBR), ethylene-propylene-diene rubber (EPDM), and chlorosulphonated rubber (CSM) as rubber materials. It had introduced the steps of every MS-treatment process and the result of the properties test. From the research, it was found that the best method was MS-V treatment because it suited all the samples and the effect was obviously.

Acoustic Properties of Rubber Compound for Anechoic Coating

  • Bae, Jong Woo;Kim, Won Ho;Ahn, Byung Hyun
    • Elastomers and Composites
    • /
    • v.53 no.4
    • /
    • pp.195-201
    • /
    • 2018
  • Three kinds of rubber compounds were prepared, and their underwater acoustical properties were investigated for anechoic coating. Dynamic mechanical properties of the rubber compounds were measured using a dynamic mechanical analyzer and extended to 100 kHz using time-temperature superposition. The sound speed, reflection coefficient, and attenuation constant were calculated. Silicone rubber showed the lowest reflection coefficient, and nitrile rubber showed the highest attenuation constant. The acoustic properties of nitrile rubber compounds with various compositions were investigated. The sound speed, reflection coefficient, and transmission coefficient of the nitrile rubber in the frequency range of 200-1000 kHz were measured in a water-filled tank.

Effect of Surfactant and Anti-foaming Agent on the Properties of Silicone Rubber Impression Material (계면활성제와 소포제가 실리콘 고무인상재의 물성에 미치는 영향)

  • Kim, Kyoung-Nam;Cho, Lee-Ra;Oh, Young-Il;Kang, Seung-Kyung;Chung, Kyung-Ho
    • Elastomers and Composites
    • /
    • v.36 no.2
    • /
    • pp.102-110
    • /
    • 2001
  • The three types of surfactants such as nonylphenoxy poly(ethylene) ethanol homologues, caster oil poly(ethylene) ethanol homologues, and sodium perfluoroalkyl carboxylates are used to improve the wettability of rubber impression material. Among the surfactants, the usage of sodium perfluoroalkyl carboxylates containing fluoro group resulted in the lowest surface energy of impression material and the result gave the positive effect on the wettability of rubber impression material to teeth. Also, the anti-foaming agents were used to reduce or remove the hydrogen gas generating on the impression material by reaction. In the case of rubber impression material containing sodium perfluoroalkyl carboxylate as a surfactant, it was found that the tear strength of rubber impression material increased over 3 N/mm with the addition of anti-forming agent. Therefore, the anti-foaming agent could contribute to the mechanical property of rubber impression material without the change of surface property.

  • PDF

Mechanical Testing and Nonlinear Material Properties for Finite Element Analysis of Rubber Components (고무부품의 유한요소해석을 위한 재료시험 및 비선형 재료물성에 관한 연구)

  • Kim, Wan-Doo;Kim, Wan-Soo;Kim, Dong-Jin;Woo, Chang-Soo;Lee, Hak-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.848-859
    • /
    • 2004
  • Mechanical testing methods to determine the material constants for large deformation nonlinear finite element analysis were demonstrated for natural rubber. Uniaxial tension, uniaxial compression, equi-biaxial tension and pure shear tests of rubber specimens are performed to achieve the stress-strain curves. The stress-strain curves are obtained after between 5 and 10 cycles to consider the Mullins effect. Mooney and Ogden strain-energy density functions, which are typical form of the hyperelastic material, are determined and compared with each other. The material constants using only uniaxial tension data are about 20% higher than those obtained by any other test data set. The experimental equations of shear elastic modulus on the hardness and maximum strain are presented using multiple regression method. Large deformation finite element analysis of automotive transmission mount using different material constants is performed and the load-displacement curves are compared with experiments. The selection of material constant in large deformation finite element analysis depend on the strain level of component in service.

A Study on the Impact Absorbing Characteristics for Various Shape and Hardness of Cylindrical Rubber Structures (원주형 고무구조물의 형상과 재질변화에 따른 충격흡수특성)

  • Kim, Dong-Jin;Kim, Wan-Doo;Lee, Young-Shin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.441-446
    • /
    • 2004
  • Mechanical systems with rubber parts have been used widely in industry fields. The evaluation of the physical characteristics of rubber is important in rubber application. Rubber material is useful to machine component for excellent shock absorbing characteristics. The impact characteristics of rubber were examined by experimental and finite element method. The impact test was conducted with a free-drop type impact tester. The ABAQUS/Explicit was used for finite element analysis. The effects of thickness and diameter of the cylindrical rubber structures were investigated. The impact absorbing ratio of the rubber material was studied order to compare the peak reaction force of the specimen which only contained aluminum against the specimen with the inserted rubber part.

  • PDF

Study on the AC Interfacial Breakdown Prosperities in the Interface between Toughened Epoxy and Rubber (Toughened Epoxy/Rubber계면의 교류 절연파괴 현상에 관한 연구)

  • 김태형;배덕권;이동규;정일형;김충혁;이홍표;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.771-774
    • /
    • 2000
  • Recently, complex insulation method is used in insulation system for underground power delivery devices. Considering the interfaces which affect stability of insulation system, By modeling interface between Epoxy and Rubber, AC interfacial breakdown properties with variation of many conditions to influence on electrical properties were investigated. In this paper, toughened Epoxy and Silicone rubber were used for materials to make interface .

  • PDF

Characteristics Evaluation and Useful Life Prediction of Rubber Spring for Railway Vehicle (전동차용 방진고무스프링 특성평가 및 사용수명 예측)

  • Woo, Chang-Su;Park, Dong-Chul
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.104-111
    • /
    • 2006
  • The non-linear properties of rubber material which are described as strain energy function are important parameter to design and evaluate of rubber spring. These are determined by material tests which are uni-axial tension and bi-axial tension. The computer simulation using the nonlinear element analysis program executed to predict and evaluate the load capacity and stiffness for chevron spring. In order to investigate the heat-aging effects on the rubber material properties, the acceleration test were carried out. Compression set results changes as the threshold are used for assessment of the useful life and time to threshold value were plotted against reciprocal of absolute temperature to give the Arrhenius plot. By using the compression set test, several useful life prediction for rubber material were proposed.

  • PDF

Estimation of Dynamic Characteristics of a Rubber Component for Subframe in Automobile Vehicle (승용차 서브프레임용 고무부시의 동강성 예측)

  • Ahn, Tae-Kil;Goo, Jun-Hwan;Kim, Joo-Sung;Lee, Yong-Heon;Kim, Kee-Joo;Choi, Byung-Ik;Lee, Hak-Joo;Woo, Chang-Su;Kim, Kyung-Shik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.10
    • /
    • pp.907-914
    • /
    • 2010
  • While rubber components are extensively used in automobile vehicle, there are still a lot of difficulties in designing the rubber components applied in complex shapes and preloaded states because of the complicated material properties. In this paper, an efficient experimental method is suggested, which estimates the dynamic stiffness of a rubber component using rubber material test and static stiffness of the bush. And it is verified by comparing with FEM predictions and experimental results. This method is capable of predicting the dynamic stiffness of a rubber bush under various load conditions from minimized test data. Also it estimates dynamic characteristics of a rubber component using rubber material test and FEM calculation.