• Title/Summary/Keyword: rpoB 유전자

Search Result 36, Processing Time 0.029 seconds

Regulation of Activity of the Response Regulator RssB (Response Regulator RssB의 활성 조절)

  • Park, Hee Jeong;Bang, Iel Soo
    • Korean Journal of Microbiology
    • /
    • v.49 no.3
    • /
    • pp.215-220
    • /
    • 2013
  • Against environmental stresses, many bacteria utilize the alternate sigma factor RpoS that induces transcription of the specific set of genes helpful in promoting bacterial survival. Intracellular levels of RpoS are determined mainly by its turnover through proteolysis of ClpXP protease. Delivery of RpoS to ClpXP strictly requires the adaptor protein RssB. The two-component-type response regulator RssB constantly interacts with RpoS, but diverse environmental changes inhibit this interaction through modification of RssB activity, which increases RpoS levels in bacteria. This review discusses and summarizes recent findings on regulatory factors in RssB-RpoS interactions, including IraD, IraM, IraP anti-adaptor proteins of RssB and phosphorylation of N-terminal receiver domain of RssB. New information shows that the coordinated regulation of RssB activity in controlling RpoS turnover confers efficient bacterial defense against stresses.

Detection of rpoB Gene Mutation in Rifampin-Resistant M. Tuberculosis by Oligonucleotide Chip (Oligonucleotide chip을 이용한 Rifampin 내성 결핵균의 rpoB 유전자 돌연변이 검출)

  • Park, Soon-Kew;Lee, Min-Ki;Chung, Byung-Seon;Kim, Cheol-Min;Chang, Chul-Hun L.;Park, Hee-Kyung;Jang, Hyun-Jung;Park, Seung-Kyu;Song, Sun-Dae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.5
    • /
    • pp.546-557
    • /
    • 2000
  • Background : Oligonucleotide chip technology has proven to be a very useful tool in the rapid diagnosis of infectious disease. Rifampin resistance is considered as a useful marker of multidrug-resistance in tuberculosis. Mutations in the rpoB gene coding $\beta$ subunit of RNA polymerase represent the main mechanism of rifampin resistance. The purpose of this study was to develop a diagnosis kit using oligonucleotide chip for the rapid and accurate detection of rifampin-resistance in Mycobacterium tuberculosis. Method : The sequence specific probes for mutations in the rpoB gene were designed and spotted onto the glass slide, oligonucleotide chip. 38 clinical isolates of Mycobacterium were tested. A part of rpoB was amplified, labelled, and hybridized on the oligonucleotide chip with probes. Results were analyzed with a laser scanner. Direct sequencing was done to verify the results. Result : The low-density oligonucleotide chip design어 to determine the specific mutations in the rpoB gene of M. tuberculosis accurately detected rifampin resistance associated with mutations in 28 clinical isolates. Mutations at codons 531, 526, and 513 were confirmed by direct sequencing analysis. Conclusion : Mutant detection using oligonucleotide chip technology is a reliable and useful diagnostic tool for the detection of multidrug-resistance in M. tuberculosis.

  • PDF

Rapid Detection of Rifampicin Resistant M. tuberculosis by PCR-SSCP of rpoB Gene in Clinical Specimens (RpoB 유전자 PCR-SSCP법에 의한 임상검체내 Rifampicin 내성 결핵균의 신속진단)

  • Shim, Tae-Sun;Kim, Young-Whan;Lim, Chae-Man;Lee, Sang-Do;Koh, Youn-Suck;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.6
    • /
    • pp.1245-1255
    • /
    • 1997
  • Background : Rifampicin(RFP) is a key component of the antituberculous short-course chemotherapy and the RFP resistance is a marker of multi-drug resistant(MDR) tuberculosis. RPoB gene encodes the $\beta$-subunit of RNA polymerase of M. tuberculosis which is the target of RFP. And rpoB gene mutations are the cause of RFP resistance of M. tuberculosis. Although several reports showed that PCR-SSCP would be a rapid diagnostic method for identifying the RFP resistance, there were few reports Performed using direct, clinical specimens. So we Performed PCR-SSCP analysis of rpoB gene of M. tuberculosis in direct, clinical specimens. Methods : 75 clinical specimens were collected from patients at Asan Medical Center from June to August 1996. After PCR of IS 6110 fragments, 43 both AFB smear-positive and IS6110 fragment PCR-positive specimens were evaluated. The RFP susceptibility test was referred to the referral laboratory of the Korean Tuberculosis Institute. DNA was extracted by bead beater method. And heminested PCR was done using 0.1ul(1uCi) [$\alpha-^{32}P$]-dCTP. SSCP analysis was done using non-denaturating MDE gel electrophoresis. Results : The results of PCR of IS6110 fragments of M. tuberculosis were positive in 55(73%) cases of 75 AFB smear-positive clinical specimens. Of the 55 specimens, RFP susceptibility was confirmed in only 43 specimens. Of the 43 AFB smear-positive and IS6110 fragment-positive specimens, 29 were RFP susceptible and 14 were RFP resistant. All the RFP susceptible 29 strains showed the same mobility compared with that of RFP sensitive H37Rv in SSCP analysis of ropB gene. And all the other RFP resistant 13 strains showed the different mobility. In other words they showed 100% identical results between PCR-SSCP analysis and traditional susceptibility test. Conclusion : The PCR-sseP analysis of rpoB gene in direct clinical specimens could be used as a rapid diagnostic method for detecting RFP resistant M. tuberculosis.

  • PDF

Comparison of PCR-Line Probe and PCR-SSCP Methods for the Detection of Rifampicin Resistant Mycobacterium Tuberculosis (Rifampicin 내성 결핵균의 검출에 있어서 PCR-line Probe법과 PCR-SSCP법의 비교)

  • Kim, Ho-Joong;Suh, Gee-Young;Chung, Man-Pyo;Kim, Jong-Won;Shim, Tae-Sun;Choi, Dong-Chull;Kwon, O-Jung;Rhee, Chong-H;Han, Yong-Chol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.4
    • /
    • pp.714-722
    • /
    • 1998
  • Background: Rifampicin (RFP) is a key component of the antituberculous short-course chemotherapy and the RFP resistance is a marker of multi-drug resistant (MDR) tuberculosis. RPoB gene encodes the $\beta$-subunit of RNA polymerase of M. tuberculosis which is the target of RFP. And the mutations of rpoB gene have been found in about 96% of rifampicin resistant clinical isolates of M. tuberculosis. So in order to find a rapid and clinically useful diagnostic method in identifying the RFP resistance, we compared the PCR -line probe method with PCR-SSCP for the detection of the rpoB gene mutation in cultured M. tuberculosis. Methods: 45 clinical isolates were collected from patients who visited Sung Kyun Kwan University Hospital. The RFP susceptibility test was referred to the referral laboratory of the Korean Tuberculosis Institute. 33 were rifampicin resistant and 12 were rifampicin susceptible. The susceptibility results were compared with the results of the PCR-BSCP and PCR-line probe method. Results: We could find rpoB mutations in 27/33(81.8%) RFP-resistant strains by PCR-line probe method, and in 23/33 (69.7%) by PCR-SSCP and there was no significant difference between two methods. There was no mutation in rifampicinn susceptible strains by both methods. Conclusion: PCR-line probe method would be a rapid, sensitive and specific method for the detection of rifampicin resistant Mycobacterium tuberculosis.

  • PDF

Identification of Mycobacterium species by rpoB Gene PCR-RFLP (rpoB 유전자의 PCR-RFLP를 이용한 Mycobacterium 균종 동정의 유용성)

  • Yu, Kyong-Nae;Park, Chung-Ho
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.38 no.3
    • /
    • pp.158-165
    • /
    • 2006
  • Although Mycobacterium tuberculosis complex strains remain responsible for the majority of diseases caused by mycobacterial infections worldwide, the increase in HIV infections has allowed for the emergence of other non-tuberculous mycobacteria as clinically significant pathogens. However, Mycobacterium species has a long period of incubation, and requires serious biochemical tests such as niacin, catalase, and nitrate test that are often tedious. The development of rapid and accurate diagnostics can aid in the early diagnosis of disease caused by Mycobacterium. The current DNA amplification and hybridization methods that have been developed target several genes for the detection of mycobacterial species such as hps65, 16S rDNA, rpoB, and dnaj. These methods produce rapid and accurate results. In this study, PCR-restriction fragment length polymorphism analysis(PCR-RFLP) based on the region of the rpoB gene was used to verify the identification of non-tuburculosis Mycobacterium species. A total of 8 mycobacterial reference strains and 13 clinical isolates were digested with restriction enzymes such as Msp I in this study. The results of using this process clearly demonstrated that all 13 specimens were identified by rpoB gene PRA method. The PCR-RFLP method based on the rpoB gene is a simple, rapid, and accurate test for the identification of Mycobacterium.

  • PDF

Detection of Point Mutations in the rpoB Gene Related to Drug Susceptibility in Mycobacterium Tuberculosis using an Oligonucleotide Chip (올리고뉴클레오티드 칩(Oligonucleotide Chip)을 이용한 항결핵제 감수성과 관련된 Mycobacterium tuberculosis rpoB 유전자의 점돌연변이 판별 방법)

  • Kim, Hyun-Jung;Kim, Seong-Keun;Shim, Tae-Sun;Park, Yong-Doo;Park, Mi-Sun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.50 no.1
    • /
    • pp.29-41
    • /
    • 2001
  • Background : The appearance of multiple-drug-resistant Mycobacterium tuberculosis strains has been seriously compromising successful control of tuberculosis. Rifampin-resistance, caused by mutations in the rpoB gene, can be indicative of multiple-drug-resistance, and its detection is of great importance. The present study aimed to develop an oligonucleotide chip for accurate and convenient screening of drug-resistance. Methods : In order to detect point mutations in the rpoB gene, an oligonucleotide chip was prepared by immobilizing specific probe DNA to a microscopic slide glass by a chemical reaction. The probe DNA that was selected from the 81 bp core region of the rpoB gene was designed to have mutation sites at the center. A total of 17 mutant probes related to rifampin-resistance including 8 rifabutin-sensitive mutant probes were used in this study. For accurate determination, wild type probes were prepared for each mutation position with an equal length, which enabled a direct comparison of the hybridization intensities between the mutant and wild type. Results : Mycobacterial genomic DNA from clinical samples was tested with the oligonucleotide chip and the results were compared with those of the drug-susceptibility test in addition to sequencing and INNO-LiPA Rif. TB kit test in some cases. Out of 15 samples, the oligonucleotide chip results of 13 samples showed good agreement with the rifabutin-sensitivity results. The two samples with conflicting result also showed a discrepancy between the other tests, suggesting such possibilities as existence of mixed strains and difference in drug-sensitivity. Further verification of these samples in addition to more case studies are required before the final evaluation of the oligonucleotide chip can be made. Conlcusion : An oligonucleotide chip was developed for the detection of rpoB gene mutations related to drugsusceptibility. The results to date show the potential for using the oligonucleotide chip for accurate and convenient screening of drug-resistance to provide useful information in antituberculosis drug therapy.

  • PDF

Comparative Transcriptome Analysis of Zerumbone-Treated Helicobacter pylori (Zerumbone 처리 헬리코박터 파이로리균의 전사체 분석 비교)

  • Woo, Hyun Jun;Yang, Ji Yeong;Kim, Sa-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.2
    • /
    • pp.301-309
    • /
    • 2022
  • Helicobacter pylori (H. pylori) establishes infection in the human gastric mucosa for a long time and causes severe gastric diseases such as peptic ulcer and gastric cancer. When H. pylori is exposed to the antibacterial agents or inhibitors, the expression of pathogenic associated genes could be altered. In this study, we analyzed the transcriptional changes of H. pylori genes induced by zerumbone treatment. RNA expression changes were analyzed using next-generation sequencing (NGS), and then reverse transcription-polymerase chain reaction (RT-PCR) was performed to verify the results. As a result of NGS analysis, a total of 23 out of 1,632 genes were differentially expressed by zerumbone treatment. RT-PCR confirmed that zerumbone treatment regulated the expression level of 14 genes. Among the genes associated with DNA replication, transcription, virulence factors and T4SS components, 10 genes (dnaE, dnaQ, rpoA, rpoD, secA, flgE, flhA, virB5, virB8 and virB9) were significantly down-regulated and 4 genes (flaA, flaB, virB4 and virD4) were up-regulated. The results of our current study imply that zerumbone might be a potential therapeutic agent for H. pylori infection by regulating factors related to various H. pylori pathogenicity.

Genetic identification of Aeromonas species using a housekeeping gene, rpoD, in cultured salmonid fishes in Gangwon-Do (강원도 양식 연어과 어류에서 분리된 에로모나스 종의 유전학적 동정)

  • Lim, Jongwon;Koo, Bonhyeong;Kim, Kwang Il;Jeong, Hyun Do;Hong, Suhee
    • Journal of fish pathology
    • /
    • v.30 no.2
    • /
    • pp.79-88
    • /
    • 2017
  • At the present, fish farms are suffering a lot of economic losses due to infectious diseases caused by various pathogens including aeromonad. Aeromonad is ubiquitous bacteria that causes infectious diseases. At least 26 species in the genus Aeromonas have been reported to cause fatal infections not only in salmonid fishes, but also in other freshwater and seawater fishes. Molecular techniques based on nucleic acid sequences of 16S rDNA and housekeeping genes can be used to identify the Aeromonas species. In this study, The genus Aeromonas was isolated from salmonid fishes of sixteen fish farms in Gangwon-Do, Korea and phylogenetically identified based on the sequences of 16S rDNA and housekeeping genes for Aeromonad, i.e. RNA polymerase sigma factor ${\sigma}^{70}$ (rpoD) or DNA gyrase subunit B (gyrB). Consequently, 96 strains were collected from Atlantic salmon (Salmo salar), coho salmon (Oncorhynchus kisutch), masou salmon (Oncorhynchus masou) and rainbow trout (Oncorhynchus mykiss), and 36 isolates were identified as the genus Aeromonas by 16S rDNA analysis. Thirty six Aeromonad isolates were further analysed based on rpoD or gyrB gene sequences and found Aeromonas salmonicida (24 isolates), A. sobria (10 isolates), A. media (1 isolates) and A. popoffii (1 isolates), indicating that A. salmonicida is a main infectious bacteria in Salmonid fishes in Gangwon-Do. It was also proved that the phylogenetic identification of Aeromonas species based on the sequences of housekeeping gene is more precise than the 16S rDNA sequence.

The Proportion of Rifabutin-susceptible Strains among Rifampicin-resistant Isolates and Its Specific rpoB Mutations (한국에서 분리된 리팜핀 내성 균주에서의 리파부틴 감수성 정도 및 관련 rpoB 유전자 돌연변이의 특성에 관한 연구)

  • Lew, Woo Jin;Park, Young Kil;Kim, Hee Jin;Chang, Chulhun;Bai, Gill Han;Kim, Sung Kyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.59 no.3
    • /
    • pp.257-265
    • /
    • 2005
  • Background : Rifabutin (ansamycin) is a spiro-piperidyl rifamycin, which is highly active against Mycobacterium tuberculosis. It has been found that some clinical isolates of tubercle bacilli that are resistant to rifampicin are susceptible to rifabutin, with some patients with multi-drug resistant pulmonary tuberculosis having shown favorable clinical and bacteriological responses to the rifabutin. This study was conducted to find the proportion of rifabutin-susceptible strains among rifampicin-resistant isolates from Korean MDR-TB patients, and investigate the presence of specific rpoB mutations, which may confer resistance to rifampicin, but not to rifabutin. Methods : 201 rifampicin-resistant and 50 pan-susceptible M. tuberculosis isolates were randomly selected for this study. The isolates were retested at rifampicin and rifabutin concentrations of 0, 20, 40 and $80{\mu}g/ml$, respectively. The isolates that grew at and/or over a rifabutin concentration of $20{\mu}g/ml$ were judged rifabutin-resistant. The rpoB gene was extracted from the isolates, and then amplified for direct sequencing to investigate specific rpoB mutations that conferred rifabutin- susceptibility but rifampicin-resistance. Results : Out of the 201 rifampicin-resistant M. tuberculosis, 41 strains (20.4%) were susceptible to rifabutin using the absolute concentration method on Lowenstein-Jensen media. The rpoB mutation types that showed susceptibility to rifabutin were Leu511Pro, Ser512Arg, Gln513Glu, Asp516Ala, Asp516Gly, Asp516Val, Asp516Tyr, Ser522Leu, His526Asn, His526Leu, His526Cys, Arg529Pro and Leu533Pro. A reverse hybridization technique was able to detect 92.5% of the rifabutin-susceptible isolates, with a specificity of 96.1% among 195 M. tuberculosis isolates with the rpoB mutation. Conclusions : Around 20% of the rifampicin-resistant isolates in Korea showed susceptibility to rifabutin, which was associated with some specific mutations of rpoB. Rifabutin could be used for the treatment of MDR-TB patients, especially when drug susceptibility testing reveals susceptibility to rifabutin.

Cloning of hadA-like Sigma Factor Gene from Streptomyces coelicolor A3(2) (Streptomyces coelicolor A3(2)에서 hrdA유사 Sigma 인자 유전자의 클로닝)

  • Hahn, Ji-Sook;Cho, Eun-Jung;Roe, Jung-Hye
    • Korean Journal of Microbiology
    • /
    • v.32 no.4
    • /
    • pp.264-270
    • /
    • 1994
  • A gene coding for a novel putative $\sigma$ factor of RNA polymerase has been identified from Streptomyces coelicolor A3(2) using Escherichia coli rpoS gene fragment as a probe. The 486 bp rpoS gene fragment was amplified from E. coli genomic DNA by PCR with two synthetic oligonucleotides, the sequences of which were deduced from the amino acid sequences in the regions 2.3 and 4.2 conserved among various bacterial factors. When E. coli genomic DNA fragments were hybridized with cloned rpoS probe, only one band corresponding to rpoS gene (3.2 kb PvuII fragment or 2.3 kb KpnI fragment) was detected. In S. coelicolor, however, two bands were detected both in PvuII digested DNA and SalI digested DNA. 3.5 kb PvuII fragment which binds the rpoS gene probe was cloned (pMS1) from the sublibrary, and the nucleotide sequences of 1.0 kb BamH'/HincII subclone (pBH2) was partially determined. The nucleotide sequences revealed extensive similarity to other $\sigma$ factor genes of S. coelicolor (hrdA, hrdB, hrdC, hrdD), S. aureofaciens (hrdA, hrdB, hrdC, hrdD), Synechococcus species, Pseudomonas aeruginosa, Stigmatella aurantiaca, and Anabaena species. The nucleotide sequences in regions 1.2 and 4 were compared with the corresponding regions of 5 known ${\sigma}$ factor genes of S. coelicolor by multiple alignment. It turned out that the cloned gene is most closely related to hrdA showing 88% amino acid similarity in region 1.2 and 75% in region 4.

  • PDF