Browse > Article
http://dx.doi.org/10.7845/kjm.2013.3057

Regulation of Activity of the Response Regulator RssB  

Park, Hee Jeong (Department of Microbiology and Immunology, Chosun University School of Dentistry)
Bang, Iel Soo (Department of Microbiology and Immunology, Chosun University School of Dentistry)
Publication Information
Korean Journal of Microbiology / v.49, no.3, 2013 , pp. 215-220 More about this Journal
Abstract
Against environmental stresses, many bacteria utilize the alternate sigma factor RpoS that induces transcription of the specific set of genes helpful in promoting bacterial survival. Intracellular levels of RpoS are determined mainly by its turnover through proteolysis of ClpXP protease. Delivery of RpoS to ClpXP strictly requires the adaptor protein RssB. The two-component-type response regulator RssB constantly interacts with RpoS, but diverse environmental changes inhibit this interaction through modification of RssB activity, which increases RpoS levels in bacteria. This review discusses and summarizes recent findings on regulatory factors in RssB-RpoS interactions, including IraD, IraM, IraP anti-adaptor proteins of RssB and phosphorylation of N-terminal receiver domain of RssB. New information shows that the coordinated regulation of RssB activity in controlling RpoS turnover confers efficient bacterial defense against stresses.
Keywords
anti-adapator proteins; phosphorylation; RpoS proteolysis; RssB;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Zhang, A., Rimsky, S., Reaban, M.E., Buc, H., and Belfort, M. 1996. Escherichia coli protein analogs StpA and H-NS: regulatory loops, similar and disparate effects on nucleic acid dynamics. EMBO J. 15, 1340-1349.
2 Zheng, M., Wang, X., Templeton, L.J., Smulski, D.R., LaRossa, R.A., and Storz, G. 2001. DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J. Bacteriol. 183, 4562-4570.   DOI   ScienceOn
3 Zhou, Y. and Gottesman, S. 2006. Modes of regulation of RpoS by H-NS. J. Bacteriol. 188, 7022-7025.   DOI   ScienceOn
4 Zhou, Y., Gottesman, S., Hoskins, J.R., Maurizi, M.R., and Wickner, S. 2001. The RssB response regulator directly targets sigma(S) for degradation by ClpXP. Genes Dev. 15, 627-637.   DOI   ScienceOn
5 Palonen, E., Lindstrom, M., Karttunen, R., Somervuo, P., and Korkeala, H. 2011. Expression of signal transduction system encoding genes of Yersinia pseudotuberculosis IP32953 at 28 degrees C and 3 degrees C. PLoS One 6, e25063.   DOI
6 Peterson, C.N., Levchenko, I., Rabinowitz, J.D., Baker, T.A., and Silhavy, T.J. 2012. RpoS proteolysis is controlled directly by ATP levels in Escherichia coli. Genes Dev. 26, 548–553.   DOI   ScienceOn
7 Pratt, L.A. and Silhavy, T.J. 1996. The response regulator SprE controls the stability of RpoS. Proc. Natl. Acad. Sci. USA 93, 2488-2492.   DOI   ScienceOn
8 Sledjeski, D.D., Gupta, A., and Gottesman, S. 1996. The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth in Escherichia coli. EMBO J. 15, 3993-4000.
9 Studemann, A., Noirclerc-Savoye, M., Klauck, E., Becker, G., Schneider, D., and Hengge, R. 2003. Sequential recognition of two distinct sites in sigma(S) by the proteolytic targeting factor RssB and ClpX. EMBO J. 22, 4111–4120.   DOI   ScienceOn
10 Tu, X., Latifi, T., Bougdour, A., Gottesman, S., and Groisman, E.A. 2006. The PhoP/PhoQ two-component system stabilizes the alternative sigma factor RpoS in Salmonella enterica. Proc. Natl. Acad. Sci. USA 103, 13503-13508.   DOI   ScienceOn
11 Weber, H., Polen, T., Heuveling, J., Wendisch, V.F., and Hengge, R. 2005. Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity. J. Bacteriol. 187, 1591-1603.   DOI   ScienceOn
12 Williams, R.M., Rimsky, S., and Buc, H. 1996. Probing the structure, function, and interactions of the Escherichia coli H-NS and StpA proteins by using dominant negative derivatives. J. Bacteriol. 178, 4335-4343.   DOI
13 Yamashino, T., Ueguchi, C., and Mizuno, T. 1995. Quantitative control of the stationary phase-specific sigma factor, sigma S, in Escherichia coli: involvement of the nucleoid protein H-NS. EMBO J. 14, 594-602.
14 Lindahl, T., Sedgwick, B., Sekiguchi, M., and Nakabeppu, Y. 1988. Regulation and expression of the adaptive response to alkylating agents. Annu. Rev. Biochem. 57, 133-157.   DOI   ScienceOn
15 Loewen, P.C. and Hengge-Aronis, R. 1994. The role of the sigma factor sigma S (KatF) in bacterial global regulation. Annu. Rev. Microbiol. 48, 53-80.   DOI   ScienceOn
16 Merrikh, H., Ferrazzoli, A.E., Bougdour, A., Olivier-Mason, A., and Lovett, S.T. 2009. A DNA damage response in Escherichia coli involving the alternative sigma factor, RpoS. Proc. Natl. Acad. Sci. USA 106, 611-616.   DOI   ScienceOn
17 Mika, F. and Hengge, R. 2005. A two-component phosphotransfer network involving ArcB, ArcA, and RssB coordinates synthesis and proteolysis of sigmaS (RpoS) in E. coli. Genes Dev. 19, 2770-2781.   DOI   ScienceOn
18 Mitrophanov, A.Y. and Groisman, E.A. 2008. Signal integration in bacterial two-component regulatory systems. Genes Dev. 22, 2601-2611.   DOI   ScienceOn
19 Moreno, M., Audia, J.P., Bearson, S.M., Webb, C., and Foster, J.W. 2000. Regulation of sigma S degradation in Salmonella enterica var typhimurium: in vivo interactions between sigma S, the response regulator MviA(RssB) and ClpX. J. Mol. Microbiol. Biotechnol. 2, 245-254.
20 Mohanty, B.K. and Kushner, S.R. 1999. Analysis of the function of Escherichia coli poly(A) polymerase I in RNA metabolism. Mol. Microbiol. 34, 1094-1108.   DOI   ScienceOn
21 Muffler, A., Barth, M., Marschall, C., and Hengge-Aronis, R. 1997. Heat shock regulation of sigmaS turnover: a role for DnaK and relationship between stress responses mediated by sigmaS and sigma32 in Escherichia coli. J. Bacteriol. 179, 445-452.   DOI
22 Muffler, A., Fischer, D., Altuvia, S., Storz, G., and Hengge-Aronis, R. 1996a. The response regulator RssB controls stability of the sigma(S) subunit of RNA polymerase in Escherichia coli. EMBO J. 15, 1333-1339.
23 Muffler, A., Traulsen, D.D., Lange, R., and Hengge-Aronis, R. 1996b. Posttranscriptional osmotic regulation of the sigma(s) subunit of RNA polymerase in Escherichia coli. J. Bacteriol. 178, 1607-1613.   DOI
24 Blum, E., Carpousis, A.J., and Higgins, C.F. 1999. Polyadenylation promotes degradation of 3'-structured RNA by the Escherichia coli mRNA degradosome in vitro. J. Biol. Chem. 274, 4009-4016.   DOI   ScienceOn
25 Bouche, S., Klauck, E., Fischer, D., Lucassen, M., Jung, K., and Hengge-Aronis, R. 1998. Regulation of RssB-dependent proteolysis in Escherichia coli: a role for acetyl phosphate in a response regulator-controlled process. Mol. Microbiol. 27, 787-795.   DOI   ScienceOn
26 Bougdour, A., Cunning, C., Baptiste, P.J., Elliott, T., and Gottesman, S. 2008. Multiple pathways for regulation of sigmaS (RpoS) stability in Escherichia coli via the action of multiple anti-adaptors. Mol. Microbiol. 68, 298-313.   DOI   ScienceOn
27 Jenal, U. and Hengge-Aronis, R. 2003. Regulation by proteolysis in bacterial cells. Curr. Opin. Microbiol. 6, 163-172.   DOI   ScienceOn
28 Hengge-Aronis, R. 1999. Interplay of global regulators and cell physiology in the general stress response of Escherichia coli. Curr. Opin. Microbiol. 2, 148-152.   DOI   ScienceOn
29 Hengge-Aronis, R. 2002. Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol. Mol. Biol. Rev. 66, 373-395, table of contents.   DOI   ScienceOn
30 Ishihama, A. 1997. Adaptation of gene expression in stationary phase bacteria. Curr. Opin. Genet. Dev. 7, 582-588.   DOI   ScienceOn
31 Klauck, E., Lingnau, M., and Hengge-Aronis, R. 2001. Role of the response regulator RssB in sigma recognition and initiation of sigma proteolysis in Escherichia coli. Mol. Microbiol. 40, 1381-1390.   DOI   ScienceOn
32 Lange, R. and Hengge-Aronis, R. 1994. The cellular concentration of the sigma S subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability. Genes Dev. 8, 1600-1612.   DOI   ScienceOn
33 Li, Y., Yamazaki, A., Zou, L., Biddle, E., Zeng, Q., Wang, Y., Lin, H., Wang, Q., and Yang, C.H. 2010. ClpXP protease regulates the type III secretion system of Dickeya dadantii 3937 and is essential for the bacterial virulence. Mol. Plant Microbe Interact. 23, 871-878.   DOI   ScienceOn
34 Eguchi, Y., Ishii, E., Hata, K., and Utsumi, R. 2011. Regulation of acid resistance by connectors of two-component signal transduction systems in Escherichia coli. J. Bacteriol. 193, 1222-1228.   DOI   ScienceOn
35 Gottesman, S. 2004. The small RNA regulators of Escherichia coli: roles and mechanisms. Annu. Rev. Microbiol. 58, 303-328.   DOI   ScienceOn
36 Barth, M., Marschall, C., Muffler, A., Fischer, D., and Hengge-Aronis, R. 1995. Role for the histone-like protein H-NS in growth phase-dependent and osmotic regulation of sigma S and many sigma S-dependent genes in Escherichia coli. J. Bacteriol. 177, 3455-3464.   DOI
37 Gruber, T.M. and Gross, C.A. 2003. Multiple sigma subunits and the partitioning of bacterial transcription space. Annu. Rev. Microbiol. 57, 441-466.   DOI   ScienceOn
38 Heithoff, D.M., Conner, C.P., Hentschel, U., Govantes, F., Hanna, P.C., and Mahan, M.J. 1999. Coordinate intracellular expression of Salmonella genes induced during infection. J. Bacteriol. 181, 799-807.
39 Hengge, R. 2009. Proteolysis of sigmaS (RpoS) and the general stress response in Escherichia coli. Res. Microbiol. 160, 667-676.   DOI   ScienceOn
40 Battesti, A., Tsegaye, Y.M., Packer, D.G., Majdalani, N., and Gottesman, S. 2012. H-NS regulation of IraD and IraM antiadaptors for control of RpoS degradation. J. Bacteriol. 194, 2470-2478.   DOI   ScienceOn
41 Bearson, S.M., Benjamin, W.H., Jr., Swords, W.E., and Foster, J.W. 1996. Acid shock induction of RpoS is mediated by the mouse virulence gene mviA of Salmonella typhimurium. J. Bacteriol. 178, 2572-2579.   DOI
42 Becker, G., Klauck, E., and Hengge-Aronis, R. 1999. Regulation of RpoS proteolysis in Escherichia coli: the response regulator RssB is a recognition factor that interacts with the turnover element in RpoS. Proc. Natl. Acad. Sci. USA 96, 6439-6444.   DOI   ScienceOn
43 Becker, G., Klauck, E., and Hengge-Aronis, R. 2000. The response regulator RssB, a recognition factor for sigmaS proteolysis in Escherichia coli, can act like an anti-sigmaS factor. Mol. Microbiol. 35, 657-666.
44 Bougdour, A., Wickner, S., and Gottesman, S. 2006. Modulating RssB activity: IraP, a novel regulator of sigma(S) stability in Escherichia coli. Genes Dev. 20, 884-897.   DOI   ScienceOn
45 Dong, T., Kirchhof, M.G., and Schellhorn, H.E. 2008. RpoS regulation of gene expression during exponential growth of Escherichia coli K12. Mol. Genet. Genomics 279, 267-277.   DOI
46 Carabetta, V.J., Mohanty, B.K., Kushner, S.R., and Silhavy, T.J. 2009. The response regulator SprE (RssB) modulates polyadenylation and mRNA stability in Escherichia coli. J. Bacteriol. 191, 6812-6821.   DOI   ScienceOn
47 Carabetta, V.J., Silhavy, T.J., and Cristea, I.M. 2010. The response regulator SprE (RssB) is required for maintaining poly(A) polymerase I-degradosome association during stationary phase. J. Bacteriol. 192, 3713-3721.   DOI   ScienceOn
48 Cheng, Y. and Sun, B. 2009. Polyphosphate kinase affects oxidative stress response by modulating cAMP receptor protein and rpoS expression in Salmonella typhimurium. J. Microbiol. Biotechnol. 19, 1527-1535.   DOI   ScienceOn