• Title/Summary/Keyword: rotor flux estimation

Search Result 198, Processing Time 0.025 seconds

A Position Sensorless Control System of SRM using Instantaneous Rotor Position Estimation (순시 회전자 위치 추정을 통한 위치센서 없는 스위치드 릴럭턴스 전동기의 제어시스템)

  • Kim Min-Huei;Baik Won-Sik;Lee Sang-Suk;Park Chan-Gyu
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.976-980
    • /
    • 2004
  • This paper presents a position sensorless control system of Switched Reluctance Motor (SRM) using neural network. The control of SRM depends on the commutation of the stator phases in synchronism with the rotor position. The position sensing requirement increases the overall cost and complexity. In this paper, the current-flux-rotor position lookup table based position sensorless operation of SRM is presented. Neural network is used to construct the current-flux-rotor position lookup table, and is trained by sufficient experimental data. Experimental results for a 1-hp SRM is presented for the verification of the proposed sensorless algorithm.

  • PDF

APPLICATION OF EXTENDED LUENBERGER OBSERVER FOR INDUCTION MOTOR CONTROL

  • Jeong, Sam-Yong;Choi, Youn-Ok;Lee, Kang-Yeon;Cho, Geum-Bae;Baek, Hyung-Lae
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.304-309
    • /
    • 1998
  • In this paper, authors introduce an application of a nonlinear rotor flux observer, known under the name of ELO(extended Luenberger Observer), for direct rotor field oriented control(DRFOC) of induction motor. ELO requires no solution of nonlinear partial differential equation for its coordinate transformation and linearization used for the nonlinear observer design. Its simulation results concerned to different level of unknown variables of load torque and rotor resistance show high accuracy on rotor flux estimation in steady state.

  • PDF

Adaptive filter and Fuzzy Controller for Speed Sensor-Less Vector Control of Induction Motor (적응필터와 퍼지제어기를 이용한 유도전동기의 속도센서 없는 벡터제어)

  • Kim, Sang-Uk;Yang, Lee-Woo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.273-276
    • /
    • 1994
  • It has been known the fact that extended Kalman filter (EKF) is correctly capable of estimating system parameters and state variables by eliminating virtually all influences of structural noises, and fuzzy controller is robust to parameter variations. this paper presents a design method of Reduced-Order EKF and fuzzy controller which consists of the rotor speed and the rotor flux estimation only by measuring stator currents. Experiment results show that both the rotor speed and the rotor flux can be prominently estimated in a wide range of the speed.

  • PDF

A Driving Torque Prediction of Brushless DC Motor by Using the Measured Current Data (전류측정 데이터를 이용한 브러쉬 없는 직류전동기의 구동토크 예측)

  • 변영철;전혁수
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.242-250
    • /
    • 1999
  • This paper presents an estimation scheme of the external torque applied on the motor by using measured motor input current when the IPM(Interior Permanent Magnet) rotor type BLDC motor operates with constant speed. In general, the BLDC motor is controlled by vector control method. If it could be operated at over critical speed, the control scheme must be modified to flux-weakening control method. The external torque applied on the motor using flux-weakening control method could not be calculated by conventional torque equation because the demagnetizing current Id exists in the motor input current. In this paper, the commonly used flux-weakening control method is studied and the modified torque estimation scheme is suggested. The estimation scheme has been verified by the simulations and experimental results.

  • PDF

A Study on Vector Control of Induction Motor Based on Speed Estimation (유도전동기의 속도 추정 벡터제어에 관한 연구)

  • 설승기;권봉현;강준구
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.9
    • /
    • pp.928-933
    • /
    • 1990
  • In the vector controlled induction machine drives, mechanical speed sensors such as shaft encoder and resolver have been used. However, the mechanical speed sensors present some problems and restrict the wide applications of high performance AC drives. This paper describes the vector strategy with the speed estimation algorithm in which motor slip frequency is calculated. Also, the angle deviation of the rotor flux vector is calculated and instantaneously compensated to keep the q axis flux zero in the rotational reference frame.

  • PDF

Sensorless Vector Control of Induction Motor Using Closed loop Flux Estimator (폐루프 자속추정기를 이용한 유도전동기의 센서리스 벡터제어)

  • 서영수;임영배;음두성;이상훈
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.217-220
    • /
    • 1998
  • In this paper, for high performance as drive, in the speed sensorless vector control of induction motor, introduced flux estimator of voltage model and error compensation algorithm using closed loop integration method, and then we proposed a improved flux estimation method of high accuracy. And the rotor speed is estimating using the stator current and the estimated flux, it is used speed information. The proposed scheme is verified through digital simulations and experiments for 3.7[kW] induction motor and shows good dynamic performance.

  • PDF

Sensorless Speed Control of Induction motor using the Intelligent Speed Estimator (지능형 속도 추정기를 이용한 유도전동기의 센서리스 속도제어)

  • Park, Jin-Su;Choi, Sung-Dae;Kim, Sang-Hoon;Yoon, Kwang-Ho;Ban, Gi-Jong;Nam, Moon-Hyon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.660-662
    • /
    • 2004
  • This paper proposes an Intelligent Speed Estimator in order to realize the speed-sensorless vector control of an induction motor. Intelligent Speed Estimator used Model Reference Adaptive System which has Fuzzy-Neural adaptive mechanism as Speed Estimation method. The Intelligent Speed Estimator estimates the speed of an induction motor with a rotor flux of a reference model and adjustable model in MRAS. The Intelligent Speed Estimator reduces the error of the rotor flux between the voltage flux model and the current flux model using the error and the change of error as input of the Estimator. The computer simulation is executed to verify the propriety and the effectiveness of the proposed speed estimator.

  • PDF

Design of Intelligent Speed Estimator for Speed Sensorless Control of Induction Motor (유도전동기의 속도 센서리스 제어를 위한 지능형 속도 추정기의 설계)

  • Park, Jin-Su;Choi, Sung-Dae;Kim, Sang-Hoon;Ko, Bong-Woon;Nam, Moon-Hyon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2304-2306
    • /
    • 2004
  • This paper proposes an Intelligent Speed Estimator in order to realize the speed-sensorless vector control of an induction motor. Intelligent Speed Estimator used Model Reference Adaptive System which has Fuzzy-Neural adaptive mechanism as Speed Estimation method. The Intelligent Speed Estimator estimates the speed of an induction motor with a rotor flux of a reference model and adjustable model in MRAS. The Intelligent Speed Estimator reduces the error of the rotor flux between the voltage flux model and the current flux model using the error and the change of error as input of the Estimator. The computer simulation is executed to verify the propriety and the effectiveness of the proposed speed estimator.

  • PDF

Sensorless Vector Control of Induction Motor with HAI Controller (HAI 제어기에 의한 유도전동기의 센서리스 벡터제어)

  • Lee, Jung-Chul;Lee, Hong-Gyun;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.2
    • /
    • pp.73-79
    • /
    • 2005
  • This paper is proposed hybrid artificial intelligent (HAI) controller based on the vector controlled induction motor drive system. The hybrid combination of fuzzy control and neural network will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed estimation of induction motor using a closed-loop state observer. The rotor position is calculated through the stator flux position and an estimated flux value of rotation reference frame. A closed-loop state observer is implemented to compute the speed feedback signal. The results of analysis prove that the proposed control system has strong robustness to rotor parameter variation, and has good steady-state accuracy and transitory response.

Rotor Resistance Estimation Using Slip Angular Velocity In Vector-Controlled Induction Motor (벡터제어 유도전동기의 슬립 각속도를 이용한 회전자 저항 추정)

  • Park, Hyunsu;Jo, Gwon-Jae;Choi, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1308-1316
    • /
    • 2018
  • Accurate tuning of parameter is very important in vector-controlled induction motor. Among the parameters of induction motor, detuning of rotor resistance used in controller design deteriorates drive performance. This paper presents a novel rotor resistance estimation strategy using slip angular velocity in vector-controlled induction motor drives. The slip angular velocity can be calculated by two methods. Firstly, it can be induced from the rotor voltage equation. Secondly, it can be induced from the difference between synchronous angular velocity and rotor angular velocity. The first method includes the rotor resistance, while the second method dose not include this parameter. From this fact, the rotor resistance can be identified by comparing the slip angular velocities in the two methods. In the tuned states of the rotor resistance, performances of flux estimator and speed drive are discussed. The simulation and experimental results are given to verify the validity of the proposed method in various situations.