• Title/Summary/Keyword: rotational pendulum

Search Result 29, Processing Time 0.032 seconds

Design and Implementation of LG-Servo Controller for Rotational Inverted Pendulum System Using Optimization Method (최적화 기법에 의한 회전형 역진자 시스템의 LQ-Servo 제어기 설계 및 구현)

  • Lee, Kang-Min;Yang, Ji-Hoon;Suh, Byung-Suhl
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.79-81
    • /
    • 2004
  • LQ-Servo controller inherits the stability-robustness from rational LQR structure and also, satisfies performance-robustness that is lacking in LQR structure by importing partial output feedback. In this paper, LQ-Servo controller is suggested for strengthening the performance-robustness. For this, Several executings are effectively performed by implementing to the rotational inverted pendulum system.

  • PDF

A Fuzzy Sliding Mode Control for Rotational Inverted Pendulum

  • Bin, Zheng;Lee, Dae-Sik
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.323-326
    • /
    • 2006
  • Rotational inverted pendulum is a typical under-actuated system. For its highly nonlinear characteristic, a sliding mode controller is chosen for its robustness against the system uncertainties. Tow fuzzy inference mechanisms are applied in this paper to reduce the chattering phenomenon. One is proposed to construct a time-varying sliding surface. Another one is used to obtain the minimum upper bound of the uncertainties. A comparison between the conventional sliding mode and the fuzzy sliding mode is shown by simulations.

  • PDF

Swing-up control of the 2-link rotational pendulum (2축 회전진자의 스윙업제어)

  • 양동훈;유기정;고영길;홍석교
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.371-371
    • /
    • 2000
  • A strategy for the swing-up control according to states of the 2-link rotational pendulum is proposed. The proposed controller consists of two modes of control such as divergence mode and stabilization mode. When the controller is in divergence mode, control input is generated using sinusoidal and signum function to make the first and second links reach the bottom and top positions, respectively. After the controller finishes divergence mode, stabilization mode is initiated to keep the pendulum around the top position using pole-placement method. Dynamic models including actuator dynamics are obtained using coordinate changes at each control mode. Simulation results are given to show the effectiveness of the proposed method.

  • PDF

Swing-Up Control of a Two-Link Pendulum with One Actuator (단일 구동부를 갖는 2축 회전형 진자의 스윙업 제어)

  • Yang, Dong-Hoon;Yoo, Ki-Jeong;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2467-2469
    • /
    • 2001
  • A strategy for the swing-up and stabilization control method for a two-links rotational pendulum according to states of each link of the rotational pendulum is proposed. The proposed controller consists of two modes of control such as divergence mode and stabilization mode. When the controller is in divergence mode, control input is generated using sinusoidal function, which is developed based on resonance period of the pendulum in linear region, to make the second link (pendulum) reach top position. After the controller finishes operation in divergence mode, stabilization control is initiated to keep the pendulum around the top position using pole placement control method. Experimental results are given to show the effectiveness of the proposed method.

  • PDF

CDM Controller Incorporating Friction Compensation for Rotational Inverted Pendulum

  • Cahyadi, Adha I.;Benjanarasuth, Taworn;Isarakorn, Don;Ngamwiwit, Jongkol;Komine, Noriyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1901-1905
    • /
    • 2004
  • A controller designed by CDM for a servo type system which is an augmented system constructed from a rotational inverted pendulum with an integrator added to its arm, is presented in this paper. In order to be able to apply the CDM concept, the augmented system must be linearized and converted into controllable canonical form. Then, the controller consisting of the state feedback gain matrix and an integral gain in the sense of CDM can be obtained. This shows that design procedure for the proposed controller is easy. The experimental results obtained from the rotational inverted pendulum controlled by the proposed controller show that the system response has no steady-state error, however, the oscillation amplitude of the arm angle is still significant. Therefore, in this paper, the friction compensation using Coulomb friction with stiction is also added to the controller. The oscillation amplitude of the arm angle that can be reduced remarkably is also shown in the experimental results.

  • PDF

An application of manual control to swinging-up of a one-link pendulum

  • Takahashi, T.;Sato, H.;Ishihara, T.;Inooka, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.772-775
    • /
    • 1989
  • It is difficult to obtain a swinging-up control sequence of a one-link pendulum analytically or numerically. In this paper, we obtain a proper control sequence through manual control experiments. However, no proper control sequence will be obtained if the rotational velocity of the pendulum is fast for the human operator. To overcome such a disadvantage, we propose a method for training the operator by using a pendulum simulator.

  • PDF

Output Feedback Sliding Mode Control System with Disturbance Observer for Rotational Inverted Pendulums (외란 관측기를 이용한 회전형 역진자 시스템의 출력 피드백 슬라이딩 모드 제어)

  • Lee, Gyu-Jun;Ha, Jong-Heon;Kim, Jong-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.243-253
    • /
    • 2002
  • This paper presents the system modeling, analysis, and controller design and implementation for a rotational inverted pendulum system(RIPS), which is an under-actuated system and has the problem of unattainable angular velocity state. A sliding mode controller using the parameterization of both the hyperplane and the compensator fur output feedback is applied to the RIPS. Also, to improve the performance of the control system, a disturbance observer which estimates the disturbance, parameter variation, and some modeling errors of RIPS with less computational effort is used together. The results of simulation and experiment show that the proposed control system has superior performance for disturbance rejection and regulation at certain initial conditions.

Robust Control for Rotational Inverted Pendulums Using Output Feedback Sliding Mode Controller and Disturbance Observer

  • Park, Jeong-Ju;Kim, Jong-Shik
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1466-1474
    • /
    • 2003
  • This paper presents a system modeling, controller design and implementation for a rotational inverted pendulum system (RIPS), which is an under-actuated system and has the problem of unattainable velocity state. Two control strategies are applied to the RIPS. One is a sliding mode control method using the parameterization of both the hyperplane and the compensator for output feedback. The other is the disturbance observer which estimates disturbance and some modeling errors of RIPS with less computational effort. Some simulations and various kinds of experiments are performed in order to verify that the proposed controller has the ability to control RIPS whose velocity is assumed to be unavailable. The results of the simulations and experiments show that the proposed control system has superior performance for disturbance rejection and regulation at certain initial conditions as well as the robustness to model uncertainties.

Swinging-up the Rotational Inverted Pendulum with Limited Sector of Arm Angle via Energy Control

  • Nundrakwang, Songmoung;Cahyadi, Adha I.;Isarakorn, Don;Benjanarasuth, Taworn;Ngamwiwit, Jongkol;Komine, Noriyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2116-2119
    • /
    • 2005
  • Inverted pendulum is a classical example and a famous tool for testing the effectiveness of many control schemes. Owing to their nonlinearity and unstable characteristic, a controller development either for swinging-up or stabilizing its upright position had been a great interest of many researchers. In this paper, the swinging-up control of the inverted pendulum using energy control will be presented. However, the saturation function in its control law could harm the experimental equipments. In addition, this swinging-up method did not consider limited sector of the arm angle to avoid another hazard, for instance, the twisted cable in the apparatus. Therefore, in this paper the position control of the arm angle using simple PD control in accordance with the energy control is proposed. Consequently, the limited arm sector angle can be achieved and the saturation function can also be replaced effectively by the PD control.

  • PDF