
1. INTRODUCTION

Inverted pendulum is a famous tool for testing the

effectiveness of many control schemes. Owing to their

nonlinearity and unstable characteristic, the controller

development had been a great interest of many researchers [1-

6]. So far, many controllers had been implemented either

linear or nonlinear controllers. The nonlinear controllers

guarantee a wide range operation and overcome the hard

nonlinearity [2-3]. In spite of having some drawbacks, a linear

controller, however, is easier to be designed and implemented

[4-6]. As proposed in [4], a linear controller based on linear

quadratic regulator (LQR) with an integrator augmented to the

rotating arm angle can satisfy the required specification. The

integrator was needed to reject the steady-state error in

controlling the inverted pendulum system due to the noise

generated by the hardware. Unfortunately the choice in

selecting the proper weighting matrix was still trial and error.

Furthermore, when the inverted pendulum is linearized by

neglecting the friction simply, it will lead to limit cycles,

which implies to somewhat an oscillatory result [7-8]. As

reported in [9], coefficient diagram method (CDM) can satisfy

time domain specification and the design is simple. In CDM

the stability and speed of the closed-loop system are related to

the stability index and the equivalent time constant

respectively. Then, the desired characteristic polynomial based

on these parameters can be composed.

In this paper, a design of a controller to stabilize the

inverted pendulum in upright position while maintaining the

arm position angle in certain position using CDM will be

presented. As the responses exhibit significant oscillation,

friction compensation using Coulomb friction with stiction

will also be introduced.

The rotational inverted pendulum shown in Fig. 2 is a

SIMO system with motor torque input and two outputs i.e. the

pendulum angle  and the arm angle . By employing the

Newton-Euler formulation, a nonlinear model of the inverted

pendulum system can be obtained. As a linear controller will

be designed, the model must be linearized about upright

position. After representing the linear model including one

augmented integrator in state space form, it will be

transformed into controllable canonical form utilizing a

transformation matrix [10] so that the CDM concept can be

applied. Then, each element of the state feedback gain matrix

and the integral gain can be designed by matching the closed-

loop characteristic polynomial of the system to those obtained

from the CDM concept.

The experimental results of the proposed control system

with and without friction compensation are also shown.

2. PLANT AND CDM CONCEPT

2.1 Overview of the plant

After applying Newton-Euler formulation, the inverted

pendulum model is derived as the nonlinear equation as

follows [4]
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and where 1 2 3 4

TT
x x x x , mu , m is

the torque applied to the pivot,  is the pendulum angle,  is

the arm angle, m  is the mass of the pendulum, l  is the

distance from the pivot point to the center of mass of the

pendulum, R is the length of the rotating arm, J and b are the

moment of inertia of the rotating arm and the pivot’s friction

coefficient respectively.
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The equilibrium points which satisfy the following equation

0 ( ( )) ( ( ))f x t g x t u                                         (2)

are 0 0 0
T

ssx c  or 0 0
T

ssx c and 0ssu

where c  is any constant.  First equilibrium point corresponds

to the upright position which is unstable, while the second is

the hanging position. Linearizing about its upright position we

have

( ) ( ) ( )x t Ax t Bu t                                    (3)

where
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As our main interests are the arm angle and the

pendulum angle , the output equation is

( ) ( )y t Cx t ,                                                                     (4)

where
1 0 0 0

0 0 1 0
C .

2.2 Concept of CDM

In CDM, the characteristic polynomial is given in the

following form
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Based on Eq. (5) the performance specification known as

stability index i , equivalent time constant  and stability

limit *

i  can be synthesized as these equations
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where 11 ~ 1, ni n .

    Then the characteristic polynomial in term of i , and 0a

can be expressed back as follows
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    The choice of stability index i  due to the control design

specifications must satisfy the following inequality

*1.5i i ,                                                 (10)

and normally can be chosen from settling time specification

as

/ 2.5 ~ 3st .                                                      (11)

However, in general the stability index known as standard

stability index is recommended as

1 3 2 1... 2, 2.5n .                                       (12)

3. CONTROL SYSTEM STRUCTURE
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Fig. 1 Control system structure.

In this section, the CDM controller design procedure and

friction compensation will be described respectively. Since an

integrator is added to the arm of rotational inverted pendulum

system for rejecting the steady-state error, the augmented

system can be constructed as shown in Fig.1, and

( ) ( ) ( ) ( )a a a ax t A x t B u t Gr t                                      (13)

( ) ( )a ay t C x t ,                                                                (14)

( ) ( ) ( )ix t r t Hx t                                                  (15)

can also be obtained, where
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and where ( )r t is the reference signal to the arm angle,

0 0 1 0H  is derived from second row of C matrix and

( )ix t is the state variable obtained by augmenting an

integrator to the arm angle.

     If the pair of A  and B  in Eq. (3) is controllable and

0
a

A B
A

H
 is full rank, then the augmented system is

completely state controllable. Therefore, the control law ( )u t
can be assigned as

( ) ( )a au t K x t                          (16)

where
a iK K k , and where 

1 2 2 1... n nK k k k k

is the state feedback gains matrix and i nk k is the integral

gain. Then the following relation can be derived as

( ) ( ) ( ) ( ) ( )a a a a a cl ax t A B K x t Gr t A x t Gr t .     (17)

3.1 CDM controller

In this sub-section, the design procedure for assigning the

feedback gain matrix K  and integral gain ik  of the system
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shown in Fig. 1 by CDM is proposed. It can be done by

matching the closed-loop characteristic polynomial of Eq. (17)

to the characteristic polynomial obtained from CDM as the

following procedure:

1. Transform the closed-loop system (17) into controllable

canonical form as

1( ) ( ) ( )clz t T A Tz t Gr t                                                (18)

by introducing a new state
1( ) ( )az t T x t . The

transformation   matrix T is defined as T MW , where

M and W are given by [10]
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and where 1 2 1, ,...,n n are the coefficient of the open-

loop characteristic polynomial

1
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2. Find the closed-loop characteristic polynomial of system

(18) as
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3. Choose the equivalent time constant and the stability

index i and derive the desired characteristic polynomial
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    from the characteristic polynomial (9) which is assumed to

be monic (i.e. 1na ) so that 
1

0

1
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n j

j
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4. Equate the closed-loop characteristic polynomial (19) with

the desired characteristic polynomial (21) to obtain

1

0 0 1 1 2 2 1 1... |a n n n nK a a a a T .     (22)

3.2 Friction compensation

The friction compensation is introduced because of the

ineligible limit cycles generated mainly by motor driving the

arm. Some methods for friction compensation have been

described in [8]. However, a simple method of Coulomb

friction with stiction F̂ which can effectively reduce the

oscillation amplitude is employed and expressed as

   if 0,sgn( )

ˆ            if 0 and ,

sgn( )   otherwise

c

s
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F
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              (23)

where cF is the coulomb friction constant, sF is the stiction

constant and  F  is the resultant forces acting on the slip ring.

In this case 
1 4

1
( ) ( ) ( )

mgR b
F x t x t u t

J J J
.

The friction compensation added to the system is shown in

Fig. 1 and then is applied to the control law as

ˆˆ
a au K x F .                                                 (24)

4. EXPERIMENTS

4.1 Experimental setup

In order to verify the effectiveness of the controller the

experiments in controlling the pendulum angle  and the arm

angle  has been done. The physical parameters of the

rotational inverted pendulum used in the experiments are

shown in Table 1.

Table 1 Parameters of the inverted pendulum.

Pendulum mass ( m ) 0.05 kg

Pendulum length ( l ) 0.48 m

Arm length ( R ) 0.47 m

Moment of inertia ( J ) 0.03264 2kg m

Viscous coefficient ( b ) 0.00351 2 /kg m s

As shown in Fig 2, the experimental apparatus consists of

three main parts: the inverted pendulum system, the interfaces

and the digital controller. The pendulum system composes of

pendulum, rotating-arm, a high torque permanent magnet DC

motor and two angular positions sensors to detect the

pendulum angle  and the arm position angle . The

interface devices are two microcontrollers PIC16C55 to filter

the quadrature signal from each encoder, one microcontroller

89C1051 as a sampling clock generator, one eight-bit D/A

converter and servo amplifier. A personal computer with Intel

Pentium II 350 MHz processor is used as the digital controller.

The control program is written in C language and the sampling

period is set at 25 milliseconds.

Fig. 2 Experimental apparatus.
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4.2 Effect of stability index i

First, the system responses corresponding to the variation of

stability index will be observed. By varying the stability index

from the standard stability index 1 2 3 42.5, 2  to

1 2 3 4 2  and to 1 2 3 4 2.2  then their

corresponding gain aK  of the augmented system for =1.2

seconds can be obtained. As depicted in Fig. 3 the dark line,

the light line and the dashed line respectively show their

experimental results. It is shown that the responses of the

system with different values of stability index oscillate around

the zero radian line, which means that the integrator added to

the arm angle of the rotational inverted pendulum can reject

the steady-state error.
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Fig. 3 System responses when the stability index is varied.
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Fig. 4 Coefficient diagrams.

As reported in [9] the stability in CDM can be qualitatively

observed visually using graphical interpretation known as

coefficient diagram. The coefficient diagram of the proposed

control system with varying stability index is shown in Fig. 4.

By relating the responses in Fig. 3 to its coefficient diagram in

Fig. 4, one can infer that the greater curvature of the

coefficient diagrams implies to the smaller oscillation of its

corresponding system responses. On the other words, the more

stable system will lead to the smaller oscillation.

4.3 Effect of friction compensation

Indeed increasing the stability index can reduce the

amplitude of oscillation. However, the control signal will be

high which is undesirable. Therefore, simple model based

friction compensation using Coulomb friction with stiction is

developed and then is applied to the system at t =10 seconds.

Fig. 5 shows the responses of the inverted pendulum when the

standard stability index i  and equivalent time constant

=1.2 seconds are used. It is seen that the oscillation

amplitude of the arm angle can be reduced significantly.
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Fig.5 System responses when friction compensation is applied.

4.4 Tracking capability

In order to show the tracking capability, the reference input

of the arm angle is changed from zero radian to one radian at

10 seconds for equivalent time constant =1.2 seconds.  The

result depicted in Fig. 6, shows that the output arm angle can

track the constant reference input and oscillates around the one

radian line, while the effect of the step change in arm angle

does not affect the oscillatory behavior of the steady state

response. It can also be observed that the rotational inverted

pendulum angle is still almost unaffected at the steady state.
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Fig. 6 Tracking capability response.
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5. CONCLUSION

In conclusion, the controller designed by CDM

incorporating simple friction compensation for a servo type

system which is a rotational inverted pendulum with an

integrator added to its arm have been proposed.  The controller

is implemented to control the system and the satisfied

performances have been achieved. The good capabilities of

angle position error rejection and tracking can be obtained as

shown in the experiments. Furthermore, the coefficient

diagram used for investigating system stability due to

variation of stability index i has also been shown.
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