• Title/Summary/Keyword: rotational error

Search Result 238, Processing Time 0.032 seconds

Usefulness of 3D Rotational Angiography for Cerebral Vascular Diameter Measurement (뇌혈관 직경측정을 위한 3차원 회전 혈관조영술의 유용성)

  • Seung-Gi, Kim;Sang-Hyun, Kim
    • Journal of radiological science and technology
    • /
    • v.46 no.1
    • /
    • pp.9-14
    • /
    • 2023
  • When measuring cerebrovascular with 3D rotational angiography, the accuracy was verified by comparing the actual size and measurement size, respectively. It is intended to help select therapeutic materials and instruments during cerebrovascular intervention by comparing the average error rates for measured values in the 3DRA and CTA methods by examining with protocols such as brain CTA, which are always performed in emergency situations. The mean error rate between the groups of measurers was ±3.655% for radiation technologist and ±3.331% for university students, and the mean error rate of the student group was within tolerance (±10%), and the independent sample T-test result t =0.879, p=0.394 (p>0.05) showed no statistically difference between the two. In addition, the average error rate measured by both groups by 3DRA was measured below ±5% within the tolerance error rate (±10%), and most of CTA was measured within the tolerance range (±10%), but showed an average error rate of up to 5.65%, and the independent sample T-test result was statistically more accurate than 3DRA. Both the 3DRA method and the brain CTA method for measuring cerebrovascular size could be accurately measured within tolerance, but it would be better to measure cerebrovascular blood vessels using a more accurate 3DRA method during cerebrovascular intervention.

Analysis of Environmental Factors Affecting the Machining Accuracy (가공정밀도에 영향을 미치는 환경요소 분석)

  • Kim, Young Bok;Lee, Wee Sam;Park, June;Hwang, Yeon;Lee, June Key
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.15-24
    • /
    • 2021
  • In this paper, to analyze the types of surface morphology error according to factors that cause machining error, the experiments were conducted in the ultra-precision diamond machine using a diamond tool. The factors causing machining error were classified into the pressure variation of compressed air, external shock, tool errors, machining conditions (rotational speed and feed rate), tool wear, and vibration. The pressure variation of compressed air causes a form accuracy error with waviness. An external shock causes a ring-shaped surface defect. The installed diamond tool for machining often has height error, feed-direction position error, and radius size error. The types of form accuracy error according to the tool's errors were analyzed by CAD simulation. The surface roughness is dependent on the tool radius, rotational speed, and feed rate. It was confirmed that the surface roughness was significantly affected by tool wear and vibration, and the surface roughness of Rz 0.0105 ㎛ was achieved.

Rotational Characteristics of Target Registration Error for Contour-based Registration in Neuronavigation System: A Phantom Study (뉴로내비게이션 시스템 표면정합에 대한 병변 정합 오차의 회전적 특성 분석: 팬텀 연구)

  • Park, Hyun-Joon;Mun, Joung Hwan;Yoo, Hakje;Shin, Ki-Young;Sim, Taeyong
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.68-74
    • /
    • 2016
  • In this study, we investigated the rotational characteristics which were comprised of directionality and linearity of target registration error (TRE) as a study in advance to enhance the accuracy of contour-based registration in neuronavigation. For the experiment, two rigid head phantoms that have different faces with specially designed target frame fixed inside of the phantoms were used. Three-dimensional coordinates of facial surface point cloud and target point of the phantoms were acquired using computed tomography (CT) and 3D scanner. Iterative closest point (ICP) method was used for registration of two different point cloud and the directionality and linearity of TRE in overall head were calculated by using 3D position of targets after registration. As a result, it was represented that TRE had consistent direction in overall head region and was increased in linear fashion as distance from facial surface, but did not show high linearity. These results indicated that it is possible for decrease TRE by controlling orientation of facial surface point cloud acquired from scanner, and the prediction of TRE from surface registration error can decrease the registration accuracy in lesion. In the further studies, we have to develop the contour-based registration method for improvement of accuracy by considering rotational characteristics of TRE.

Molecular Dynamics Simulation Study for Transport Properties of Diatomic Liquids

  • Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1697-1704
    • /
    • 2007
  • We present results for transport properties of diatomic fluids by isothermal-isobaric (NpT) equilibrium molecular dynamics (EMD) simulations using Green-Kubo and Einstein formulas. As the molecular elongation of diatomic molecules increases from the spherical monatomic molecule, the diffusion coefficient increases, indicating that longish shape molecules diffuse more than spherical molecules, and the rotational diffusion coefficients are almost the same in the statistical error since random rotation decreases. The calculated translational viscosity decreases with the molecular elongation of diatomic molecule within statistical error bar, while the rotational viscosity increases. The total thermal conductivity decreases as the molecular elongation increases. This result of thermal conductivity for diatomic molecules by EMD simulations is again inconsistent with the earlier results of those by non-equilibrium molecular dynamics (NEMD) simulations even though the missing terms related to rotational degree of freedom into the Green-Kubo and Einstein formulas with regard to the calculation of thermal conductivity for molecular fluids are included.

Induction Motor Position Controller Based on Rotational Motion Equations

  • Salem, Mahmoud M.
    • Journal of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.268-274
    • /
    • 2008
  • This paper presents a proposed position controller for a vector controlled induction motor. The position controller design depends on the rotational motion equations and a classical speed controller (CSC) performance. The CSC is designed to have the ability to track variable reference inputs and to provide a predefined system performance. Standard position controller in industry is presented to analyze its performance and its drawbacks. Then the proposed position controller is designed, based on the well defined rotational motion equations. The proposed position controller and the CSC are applied to control the position and speed of the vector controlled induction motor with different ratings. Simulation results at different operating conditions are presented to evaluate the proposed controllers' performance. The results show that the CSC can drive the motor with a predefined speed performance and can track a variable reference speed with an approximately zero steady state error. The results also show that the proposed position controller has the ability to effect high-precision positioning in a limited time and to track a variable reference position with a zero steady state error.

A Study on the Laser Measurement Experiment for Performance Advancement of Tilting Index Table (틸팅 인덱스 테이블의 성능 향상을 위한 레이저 측정 실험에 관한 연구)

  • Kim, Kwang-Sun;Lee, Tae-Ho;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.26-30
    • /
    • 2011
  • Currently, many researches are carried out about tilting index table, which is one of the main component of 5-axis machine tool. The performance of the tilting index table is associated the rotational accuracy which is very important factor for high precision machining because it have an effect on machining error. In this paper, a tilting index table is developed, and the rotational accuracy of the tilting index table using a laser measurement equipment is measured. In addition, a correction value is obtained from the measured value through compensation, and the correction value is used to improve the accuracy of the table. Comparative analysis is carried out for the accuracy of the table before and after compensation. This paper can be used by a reference for performance and reliability advancement of tilting index table.

Analysis of Load Transmission Characteristics for Automobile Helical Gear (자동차 헬리컬기어의 하중전달 특성해석)

  • Park, C.I.;Lee, J.M.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.1-9
    • /
    • 1995
  • The purpose of this study is to develop a computer simulation program for analyzing load transmission characteristics of a helical gear system in design stage. In this analysis, the rotational delay, load distribution, root stress, and contact area are investigated. That is, the influence function of deflection is obtained by finite element analysis and the influence function of approach and gear tooth error are considered. Load distribution, rotational delay, and contact area are calculated by solving load-deflection equation which includes these influence functions and tooth error, and the influence function of the bending moment is obtained by finite element analysis. The root stress is calculated by the load distribution and the influence function of the bending moment. The results of the simulation are cross-checked through a specially designed experimental set-up.

  • PDF

Design and control of a permanent magnet spherical wheel motor

  • Park, Junbo;Kim, Minki;Jang, Hyun Gyu;Jung, Dong Yun;Park, Jong Moon
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.838-849
    • /
    • 2019
  • We present a permanent magnet-based spherical wheel motor that can be used in omnidirectional mobility applications. The proposed motor consists of a ball-shaped rotor with a magnetic dipole and a hemispherical shell with circumferential air-core coils attached to the outer surface acting as a stator. Based on the rotational symmetry of the rotor poles and stator coils, we are able to model the rotor poles and stator coils as dipoles. A simple physical model constructed based on a torque model enables fast numerical simulations of motor dynamics. Based on these numerical simulations, we test various control schemes that enable constant-speed rotation along arbitrary axes with small rotational attitude error. Torque analysis reveals that the back electromotive force induced in the coils can be used to construct a control scheme that achieves the desired results. Numerical simulations of trajectories confirm that even without explicit methods for correcting the rotational attitude error, it is possible to drive the motor with a low attitude error (<5°) using the proposed control scheme.

A Rotational Decision-Directed Joint Algorithm of Blind Equalization Coupled with Carrier Recovery for 32-QAM Demodulation (회전결정 경계를 이용한 32-QAM 목조용 반송파 복구와 채널등화의 Joint 알고리즘)

  • Song, Jin-Ho;Hwang, Hu-Mor
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.2
    • /
    • pp.78-85
    • /
    • 2002
  • We introduce a rotational decision-directed joint algorithm of blind equalization coupled with carrier recovery for 32-QAM demodulation with high symbol rate. The proposed carrier recovery, which we call a rotational decision-directed carrier recovery(RDDCR), removes the residual phase difference by rotating the decision boundary for the kth received symbol by the frequency detector output of the (k-1)th received symbol. Since the RDDCR includes the function of PLL loop filter by rotating the decision boundary, it gives a simpler demodulator structure. The rotational decision-directed blind equalization(RDDBE) with the rotated decision boundary based on the Stop-and-Go Algorithm(SGA) operated during tracking the frequency offset by the RDDCR and removes intersymbol interference due to multipaths and channel noise. Test results show that symbol error rate of $10^{-3}$ is obtained before the forward error correction when SNR equals 15dB with 150KHz of carrier frequency offset and two multipaths, which is the channel condition for 32-QAM receiver.

A Sudy on the Ealuation of Rtational Acuracy of Hgh Seed Sindle (고속주축의 회전정밀도 성능평가에 관한 연구)

  • 김종관;이중기
    • Journal of KSNVE
    • /
    • v.5 no.4
    • /
    • pp.483-492
    • /
    • 1995
  • For evaluation of rotational accuracy performance of high speed machine tool spindle system, the characteristics of main spindle and tool motion behavior are presented by means of three point accuracy testing method. The results of experiments and analyses are as follows: (1) The high speed spindle rotational accuracy can be evaluated by the combination of the spindle and tool motion behavior. (2) The spindle motion behavior increases up to more that 4 times the tool motion behavior. (3) For the influence of oil viscosity on spindle and tool taper application, 32 cSt of oil viscosity showed the most satisfactory result for rotational accuracy. (4) In order to improve the rotational accuracy of high speed machine tool spindle system, it is needed to reduce the combination error. This can be achieved by improving the working accuracy and supplying the proper lubrication with contact area at the spindle and tool.

  • PDF