Browse > Article
http://dx.doi.org/10.5012/bkcs.2007.28.10.1697

Molecular Dynamics Simulation Study for Transport Properties of Diatomic Liquids  

Lee, Song-Hi (Department of Chemistry, Kyungsung University)
Publication Information
Abstract
We present results for transport properties of diatomic fluids by isothermal-isobaric (NpT) equilibrium molecular dynamics (EMD) simulations using Green-Kubo and Einstein formulas. As the molecular elongation of diatomic molecules increases from the spherical monatomic molecule, the diffusion coefficient increases, indicating that longish shape molecules diffuse more than spherical molecules, and the rotational diffusion coefficients are almost the same in the statistical error since random rotation decreases. The calculated translational viscosity decreases with the molecular elongation of diatomic molecule within statistical error bar, while the rotational viscosity increases. The total thermal conductivity decreases as the molecular elongation increases. This result of thermal conductivity for diatomic molecules by EMD simulations is again inconsistent with the earlier results of those by non-equilibrium molecular dynamics (NEMD) simulations even though the missing terms related to rotational degree of freedom into the Green-Kubo and Einstein formulas with regard to the calculation of thermal conductivity for molecular fluids are included.
Keywords
Diffusion; Shear viscosity; Thermal conductivity; Diatomic liquids; Molecular dynamics simulation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford Univ. Press: Oxford, 1987; p 48
2 Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford Univ. Press: Oxford, 1987; p 64
3 Lee, S. H.; Cummings, P. T. Mol. Sim. 2001, 27, 139   DOI   ScienceOn
4 Tokumasu, T.; Ohara, T.; Kamijo, K. J. Chem. Phys. 2003, 118, 3677   DOI   ScienceOn
5 Fernandez, G. A.; Vrabec, J.; Hasse, H. Mol. Sim. 2005, 31, 787   DOI   ScienceOn
6 Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford Univ. Press: Oxford, 1987; p 234
7 Gear, C. W. Numerical Initial Value Problems in Ordinary Differential Equations; Englewood Cliffs: NJ, Prentice Hall, 1971
8 Evans, D. J. Mol. Phys. 1977, 34, 317   DOI   ScienceOn
9 Evans, D. J.; Murad, S. Mol. Phys. 1977, 34, 327   DOI   ScienceOn
10 Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford Univ. Press: Oxford, 1987; p 88
11 Lee, S. H. Bull. Kor. Chem. Soc. 2007, 28, 1371   DOI   ScienceOn
12 Harp, G. D.; Berne, B. J. Phys. Rev. 1970, A2, 975
13 Rahman, A.; Stilllnger, F. H. J. Chem. Phys. 1971, 55, 3336   DOI
14 Lee, S. H.; Cummings, P. T. Mol. Sim. 2001, 27, 115   DOI   ScienceOn
15 Lee, S. H.; Kim, H. S.; Pak, H. J. Chem. Phys. 1992, 97, 6933   DOI
16 Cook, G. A. Argon, Helium and the Rare Gases; Intersciences: NY, 1961
17 Lee, S. H. Bull. Kor. Chem. Soc. 2004, 25, 737   DOI   ScienceOn
18 Barojas, J.; Levcsque, D.; Quentrec, B. Phys. Rev. 1973, A7, 1092
19 Lee, S. H.; Cummings, P. T. J. Chem. Phys. 1996, 105, 2044   DOI   ScienceOn
20 Streett, W. B.; Tildesley, D. J. Proc. R. Soc. Lond. 1976, A348, 485
21 Cheung, P. S. Y.; Powles, J. G. Mol. Phys. 1975, 30, 921   DOI   ScienceOn
22 Singer, K.; Taylor, A.; Singer, J. V. L. Mol. Phys. 1977, 33, 1757   DOI   ScienceOn
23 Evans, D. J.; Street, W. B. Mol. Sim. 1978, 36, 161