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We present results for transport properties of diatomic fluids by isothermal-isobaric (NpT) equilibrium 
molecular dynamics (EMD) simulations using Green-Kubo and Einstein formulas. As the molecular elongation 
of diatomic molecules increases from the spherical monatomic molecule, the diffusion coefficient increases, 
indicating that longish shape molecules diffuse more than spherical molecules, and the rotational diffusion 
coefficients are almost the same in the statistical error since random rotation decreases. The calculated 
tran 이 ationa! viscosity decreases with the molecular elongation of diatomic molecule within statistical error bar, 
while the rotational viscosity increases. The total thermal conductivity decreases as the molecular elongation 
increases. This result of thermal conductivity for diatomic molecules by EMD simulations is again inconsistent 
with the earlier results of those by non-equilibrium molecular dynamics (NEMD) simulations even though the 
missing terms related to rotational degree of freedom into the Green-Kubo and Einstein formulas with regard 
to the calculation of thermal conductivity for molecular fluids are included.
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Introduction

The earlie마 molecular dynamics (MD) calculations on 
polyatomic fluids have been carried out by Harp and Berne1 
using a Stockmayer-type potential to simulate CO and N2 
and by Rahman and Stillinger2 to simulate H2O. For 
dumbbell diatomic molecules, a very simple extension of the 
hard-sphere model is to consider a diatomic composed of 
two hard spheres fused together,3 but more realistic models 
involve continuous potentials. Thus, N為 Fz, Cb etc. have 
been depicted as two *Lennard-Jones atoms* separated by a 
fixed bond length/-6

Lee and Cummings7 reported results of non-equilibrium 
molecular dynamics (NEMD) simulations for shear vis­
cosities of pure quadrupolar fluids, a pure dipolar qua- 
drupolar fluid, non-quadrupolar/quadrupolar mixtures, and 
quadrupolar/quadrupolar mixtures. They found that the addi­
tion of quadrupolar interactions to the pure Ar and to the 
pure dipolar Ar leads to a higher viscosities as was observed 
in the addition of dipolar interaction to the pure Ar? They 
continued to report results of NEMD simulations for shear 
viscosities of pure diatomic fluids, monatomic/diatomic 
mixtures, and diatomic/diatomic mixtures? It was found that 
the interaction between diatomic molecules is less attractive 
than that between spherical molecules which leads to lower 
viscosities as was observed in the experimental fact that the 
viscosity of normal alkanes is less than that of branched 
alkanes.

Recently, Tokumasu et a/.10 have studied the effect of 
molecular elongation on the thermal conductivity of 
diatomic liquids using a NEMD method. It was found that 
the reduced thermal conductivity increases as molecular 
elongation increases. Detailed analysis of the molecular 
contribution to the thermal conductivity revealed that the 
contribution of the flux caused by energy transport and by 

translational energy transfer to the thermal conductivity is 
independent of the molecular elongation, and the con­
tribution of the heat flux caused by rotational energy transfer 
to the thermal conductivity increases with the increase in the 
molecular elongation.

More recently, "Wabec et al.n calculated shear viscosity and 
thermal conductivity of ten fluids, modeled by the two-center 
Lennard-Jones plus point quadrupole (2CLJQ) pair potential, 
using equilibrium molecular dynamics simulation with the 
Green-Kubo formalism. They found that at low temperature 
and high density states, the Green-Kubo integral for shear 
viscosity shows slow convergence. This problem was 
overcome by a new approach which is based on the 
adjustment of a suitable function describing the long time 
behavior of the auto-correlation function and yields reliable 
results without the need of excessively long simulations runs.

In the present paper, we report equilibrium MD 
simulations for the systems of spherical monatomic and 
several dumbbell diatomic molecules. The primary study 
goal is to analyze the dependence of transport properties of 
diatomic molecules on molecular elongation. This paper is 
organized as follows : We present the molecular models and 
the technical details of MD simulation in the following 
section, some theoretical aspects in Section III, our results in 
Section IY and concluding remarks in Section V

Molecular Models and MD Simulation Methods

The diatomic molecule is modeled as the two-center 
Lennard-Jones potential6 The total interaction is a sum of 
pairwise contributions from distinct atoms a in molecule i, at 
position ria. and b in molecule /, at position g

2 2
Z勺(r【j) = £ £ 财(京)， (1)

a = M = 1
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Figure 1. Monatomic and diatomic molecules.

Theorem

As dynamic properties, we consider diffusion constant 
(D), viscosity ( 〃), and thermal conductivity (2) of diatomic 
liquid systems.

Diffusion constant Translational diffusion constant (Z)z) 
can be obtained through two routes: the Green-Kubo 
formula from velocity auto-correlation functions (VAC):

J = <以?)•侦0)>dt (4)

and the Einstein formula from mean square displacements 
(MSD):

D, = glim，시"-")『> 

6—s dt
(5)

where rab is the inter-site separation 衫湖=|成，一。2 and uab is 
the pair potential acting between sites a and b:
""长广-㈢]•⑵

Here 財 and 缶 are the Lennard-Jones (LJ) parameters for 
each site of the diatomic molecule. The interatomic 
separation in a diatomic molecule, 4 is chosen such as the 
volume of the diatomic molecule is the same as that of a 
sphere of diameter s$・ Since the volume of a diatomic 
molecule of two spheres of diameter sa is given by

Vd = + /如 + 土1六 (3)

for a given interatomic separation l=L(jd,缶 is determined 
by equating Vd= K, and can be expressed in the form of 砒= 
c(js. In this study, we have chosen as L=0, 1/12, 1/6, 1/4, 
and 1/3, and the corresponding c is determined as 1.0, 
0.9616, 0.9289, 0.9010, and 0.8772, respectively, as 아lovm 
in Figure 1. The other LJ parameter sci is chosen as 瑟/4. The 
LJ parameters, as and fbr the spherical Ar are chosen as 
0.3405 nm and 0.9961 kJ/mol, respectively.

All EMD simulations were carried on 1728 molecules in 
isothermal-isobaric (NpT fixed) ensemble and folly equili­
brated for at lea아 500,000 time 아eps of 10-b second (1 
femto second). The equilibrium properties were then avera­
ged over 5 blocks of 200,000 time steps for a total of 
1,000,000 time steps (1 nano second), and the configurations 
of molecules were stored every 10 time steps for later 
analysis of structural and dynamic properties. The inter- 
molecular potentials were subject to a spherical cuto任 as 
follows: the cuto任 distance was 2.5冬 for pure diatomic 
fluids. The equations of translational motion in NpT 
ensemble were devised by a constraint method12 and solved 
using a fifth-order, predictor-corrector, Gear integration,13 
and the equations of rotational motion about the center of 
mass fbr molecular fluids in NpT ensemble were derived 
using quaternions.14'16

The contribution to diffusion by rotational motion of 
diatomic molecule is represented by rotational diffusion 
constant:

.9 .

Dr = r f <w") •叫(0)> dt 
z J。

and

(6)

(7)
q = 시 e，(')Y(°)K>

4 FT s dtr

Here and are the angular velocity and the unit 
orientation vector of diatomic molecule i, respectively. The 
denominators of 2 and 4 in Eqs. (6) and (7) are due to 2 
degrees of freedom of rotational motion.

Shear viscosity. Shear viscosity by translational motion is 
calculated by a modified Green-Kubo formula for better 
statistical accuracy17:

广禅(dt §""?(())• R*)> , (8)

where Piap is the a(3 component of the molecular stress 
tensor, P" of particle i by translational motion :

R必⑺==[g涂)V*)+膈(少伊⑴]• (9)

There is another formula for

P'0)=十加恥(如*)+ £ 勺a(叫*)] • (10) 

where 砂=xy, xz, yx, yz, zx, or zy. The equality of Eqs. (9) 
and (10) with E； is discussed in Ref..18 It is recommended to 
use Eq. (10) in a simulation that employs periodic boundary 
condition.

Shear spin viscosity by rotational motion is calculated by a 
similar way to translational motion19:

〈膈(()).％?(')>, (H)

where two formulas for P/a/:
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고m相) = 四伊⑺ + (12)

and 

p'M)= § 0 + (13)

where N, denotes the torque on the molecules I.
Thermal conductivity. Thermal conductivity is calcu­

lated by a modified Green-Kubo formula fbr better statistical 
accuracy17:

人=亠］dt £ < Ma(0)M〃)> ， (14)

where a=x, y, and z, and the total heat flux by molecule i is 

4涂)=甲(如濕)

+ ? Z 七次)h" -4(0 + <(0 .域⑴］:.(15)

Here, the superscript /? indicates the principle axis frame and 
the total energy of molecule i is given by

知)=+財4如)2 +技】中［勺(。］・(16) 

J - 느 E
where 中(勺)denotes the potential energy between molecules 
i and/.

The heat flux by each molecule, Eq. (15), with the energy 
of molecule, Eq. (16), consists of five contributions :

Qia = 4'：a + 甘;a + ^ia + Qia- (17)

and there are two different molecular mechanism respon­
sible for heat flux in liquids, namely, energy transport due to 
molecular motion and energy transfer due to molecular 
interaction. These mechanisms correspond to the first and 
second terms on the right-hand side of Eq. (15), respectively, 
which are called the transport term and the interaction term. 
The heat flux caused by molecular motion consi아s of three 
contributions of translational, rotational and potential energy 
transport, which correspond to the first, second and third 
terms in Eq, (16), respectively. The contributions to the heat 
flux due to translational, rotational and potential energy 
transport are defined, respectively, by

fia =壯"*汁」, (18)

4'：a =壯叫恥, (19)

and

戒=①(勺)］v,a . (20)

The heat flux caused by molecular interaction consi아s of 
two contributions of translational and rotational energy 
transfer, which corresponds to the first and second terms in 

the interaction term in Eq, (15). The heat flux caused by 
translational and rotational energy transfer is defined by

■=牝£ ⑴-fiji I (21)
and

花a = ， (22)

respectively. Hence, the thermal conductivity, Eq. (14), 
consi아s of five contributions :

^tot = + 사?. + 人华 + 2/7 + 자 7. • (23)

Results and Discussion

NpT EMD simulations for monatomic and diatomic 
molecular systems carried out with a careful consideration of 
the long-range correction due to the spherical cut・o任 the 
potential, which is a tail correction estimating the con­
tribution from pairs of particles whose distance apart is 
greater than the cut-off distance?彼 Thermodynamic 
properties for monatomic and diatomic molecules at 94.4 K 
in NpT ensemble obtained from our EMD simulations are 
listed in Table 1. The Lennard-Jones(LJ) energy and total 
energy decrease negatively with increasing interatomic 
separation in a diatomic. This means that the interaction 
between diatomic molecules becomes less attractive with the

Table 1. Lennard-Jones energy (Elj in kJ/mol), total energy (EtOt in 
kJ/mol), pressure (p in atm), volume (V in nm3) and of diatomic 
molecules at 94.4 K in NpT ensembles. Uncertainties (standard 
deviations) in the last reported digit(s) are given in parenthesis.

Properties L = 0 L=l/12 L=l/6 L = 1/4 L = l/3
-电 5.339(5) 5.196(8) 4.455(5) 3.555(9) 2.404(6)
■Etot 4.161(5) 3.234(8) 2.493(5) L592(9) 0.502(6)

P -0.407(3) 0.969(2) 1.03(2) 1.05(3) L09(4)
V 84.21(49) 78.81(44) 79.93(52) 88.01(24) 113.0(10)

Figure 2. Energy distributions.
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Figure 4. Radial distribution functions.

increase in the molecular elongation. The calculated pre­
ssures in NpT EMD simulations are much close to 1 atm 
except the monatomic molecular system. The modification 
from the sphere of diameter ss to the diatomic system of 
L=l/12 brings a volume decrease from 84 nm3 to 79 nm3 
and then the volume increases with the value of L. Also note 
that beyond the elongation of L=l/3, fbr example, in the 
diatomic molecular systems of L=5/12 and 1/2, the system 
becomes infinite dilution, keeping the pressure of the system 
as 1 atm.

Figure 2 shows the energy distributions of the potential 
energy (P.E.), translational kinetic energy (T.E.), and 
rotational kinetic energy (R.E.) of monatomic and diatomic 
molecules. The P.E. decreases negatively with increasing 
interatomic separation in a diatomic as seen in Table 1. The 
distribution of T.E. displays a typical Maxwell-Boltzman 
energy distribution \f{s) 〜 寸 占 저| while that of R.E.
indicates a lot of diatomic molecules do not rotate at T = 
94.4 K. However, this may lead a misunderstanding of 
rotational speed distribution, which is a typical Maxwell-

Table 2. Translational (Di) and rotational diffusion coefficients (Dr, 
10一5 cm2/sec) of monatomic and diatomic molecules at 94.4 K 
obtained through the Green-Kubo and Einstein formulas. Uncer­
tainties (standard deviations) in the last reported digit(s) are given 
in parenthesis

D L = 0 L=l/12 L=l/6 L = 1/4 L = l/3
3, Eq・(4) 2.55(4) 2.77(5) 3.65(13) 5.48(13) 9.93(83)
Dh Eq. (5) 2.54(4) 2.92(7) 3.81(13) 5.24(11) 8.53(68)
1為 Eq. (6) - - 136(9) 90.1(4) 90.8(14)

Boltzman energy distribution as shown in Figure 3.
Figure 4 shows the center-center radial distribution func­

tions, g(r), of monatomic and diatomic molecules at 94.4 K 
in NpT ensemble. As the molecular elongation increases, the 
first and second peaks in the center of mass g(r) diminish 
gradually and the minima increase. It is also observed that 
the nearest distance between centers of diatomic molecules 
becomes shorter with the increase in the molecular 
elongation. This is because the centers of mass of diatomic 
molecules come closer as the molecular elongation 
increases.

Table 2 lists the translational and rotational diffusion 
coefficients of monatomic and diatomic molecules at 94.4 K 
obtained through the Green-Kubo and Ein아ein formulas. 
The velocity auto-correlation function and mean square 
displacement of monatomic and diatomic molecules are 
well-behaved (data not shown) as seen in the standard 
deviation for the translational diffusion coefficients. As the 
molecular elongation of diatomic molecule increases from 
the spherical monatomic molecule, the translational diffu­
sion coefficient increases. This means that a rod-like 
molecule diffuses more than a spherical molecule as seen in 
羚-butane and z-butane.

Employing two fbrmals, Eqs. (6) and (7), to calculate the 
rotational diffusion coefficients, there exists two difficulties. 
First, in the Green-Kubo formula, Eq. (6), the angular 
velocity auto-correlation function for L=l/12 does not 
decay to zero in the long time as shown in Figure 5 and the 
resulting rotational diffusion coefficient goes infinity. This is 
because the interatomic separation is so short that the 
diatomic molecule persists not to rotate even though the 
torque is large. Second, in the Einstein formula, Eq. (7), the 
mean square displacements of unit orientation vector e^t) 
are not a linear function of time as seen in Figure 6 because 
the value of 어7) is unit. As a result, we were not able to 
calculate the rotational diffusion coefficients from Eq. (7). 
The value of the mean square displacements of unit 
orientation vector approaches to 2 as time goes infinity since 
in the following equation :

lim〈|e() - e,(0)「〉

=lim ［〈&(，)「〉+〈|e,(0)「〉- 2〈|e()・e,(0)「〉］

= 2 - 2 lim〈 |e〃) • q((이〉 (24)
t ->
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Figure 5. Normalized angular velocity auto-correlation function.

Figure 6. Mean square displacements of unit orientation vector.

the second term in the last equation goes zero as time goes 
infinity.

Rewriting Eq. (6) in terms of the normalized angular 
velocity auto-correlation function,

Dr =
r, & f 丄〈叫(°) • *‘()〉 
2<W)J0d <wz(0)-wz.(0))' (25)

since the rotational temperature, Tr = ImP/旗 is a constant and 
the inertia of momentum for diatomic molecule is given by I 
=2m(〃2)z= m/2/2, Pw니is a constant. The rotational 
diffusion coefficient depends on only the integral of the 
normalized angular velocity auto-correlation function in 
Figure 5. As the molecular elongation of diatomic molecules 
increases, random rotation decreases and the rotational 
diffusion coefficients for L= 1/4 and 1/3 are almost the same 
in the statistical error.

Shear viscosities by translational motions and shear spin 
viscosities by rotational motion calculated from our 
equilibrium MD simulations are li아 in Table 3. Trans­
lational viscosity of the spherical monatomic molecule at

Table 3. Shear (邛,mp) and shear spin viscosities (〃乃 10-24 kg/ 
m-sec) of monatomic and diatomic molecules at 94.4 K obtained 
through the Green-Kubo and Einstein formulas. Uncertainties 
(standard deviations) in the last reported digit(s) are given in 
parenthesis.

L = 0 L=l/12 L=l/6 L=l/4 L=l/3

邛,Eq. (9) 3.09(31) 26.6(23) 26.8(15) 24.0(13) 20.5(35)
邛,Eq. (10) 3.08(1) 2.81(5) 2.05(3) 1.28(5) 0.62(6)
%, Eq. (11) - 0.350(18) 1.86(9) 3.78(21) 6.03(40)
%, Eq. (12) - 0.0034(8) 0.0431(6) 0.121(4) 0.148 ⑵

Figure 7. Translational stress [Eq. (10)] auto-correlation function.

Figure 8. Rotational stress [Eq. (13)] auto-correlation function.

94.4 K shows a very close result with the experimental 
viscosity of liquid argon (1.97 mp22). Two shear viscosities 
obtained from different translational stresses, Eqs. (9) and 
Eq. (10), and two shear spin viscosities obtained from 
different translational stresses, Eqs. (12) and Eq. (13) for 
diatomic molecules show a difference in order of magnitude 
each other. Referring the shear viscosity of the spherical 
monatomic molecule, the first values of shear viscosity and
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Table 4. Thermal conductivities (X in 10-7 cal/K-cm-sec) of mona­
tomic and diatomic molecules at 94.4 K obtained through the 
Green-Kubo. Uncertainties (standard deviations) in the last 
reported digit(s) are given in parenthesis, parenthesis.

L = 0 L=l/12 L = l/6 L=l/4 L=l/3
치, Eq. (18) 145(7) 166(2) 210(10) 276(7) 368(19)
，饥 Eq. (19) - 42(4) 12⑴ 16(2) 21(3)
，饥 Eq. (20) 791(51) 871(20) 828(39) 715(41) 463(60)
扁 Eq. (21) 773(16) 813(34) 741(23) 590(30) 346(53)
，饥 Eq. (22) - 5.6(1) 53⑴ 91(3) 109(11)
由 Eq. (23) 1709 1898 1844 1688 1307

.4 
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Figure 9. Normalized heat fl냐x (此 ) auto-correlation function.

Figure 10. Normalized heat flux ) auto-correlation function.

those of shear spin viscosity for diatomic molecules should 
be discarded.

Figures 7 and 8 shows the translational and rotational 
stresses, respectively. As the molecular elongation of 
diatomic molecule increases from the spherical monatomic 
molecule, the height of the translational stress auto­
correlation function decreases and accordingly the shear

0
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-0.2 
0 1 2 3 4 5

t(ps)
Figure 11. Normalized heat flux (我)auto-correlation function.
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Figure 12. Normalized heat flux {q-a ) auto-correlation function.

viscosity decreases, while for the shear spin viscosity the 
opposite is observed.

Energy transported via molecular motion governs heat 
conduction in gases, while energy transfer between mole­
cules due to molecular interaction is a dominant factor in 
heat conduction in liquids. Liquid molecules transport ener­
gy by molecular motion and transfer their energy to other 
molecules by molecular interaction. Each contribution to the 
total thermal conductivity, Eq. (23), for the spherical mona­
tomic and diatomic molecules are shown in Table 4. Thermal 
conductivity of the spherical monatomic molecule at 94.4 K 
shows a very close result with the experimental viscosity of 
liquid argon (2740 x 10-7 cal/Kcm ・ sec22). Several normalized 
heat flux auto-correlation functions are shown in Figures 9­
13. Each correlation function corresponds to heat flux of Eqs. 
(18)-(22). Since the modified Green-Kubo formula, Eq. (14), 
for thermal conductivity is rewritten as :

(26)
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Figure 13. Normalized heat flux (我)auto-correlation function.

is related to two focotrs - the average of square ofheat flux at 
time 0 and the time integration of the normalized heat flux 
auto-correlation function.

The normalized heat flux auto-correlation functions of 
heat fluxes due to translational, rotational and potential 
energy transport show a very similar trend as seen in Figures 
9, 10 and 11 because each heat flux of each molecule i 
contains the velocity term, v, in Eqs. (18), (19) and (20). 
Thermal conductivity due to translational energy transport 
monotonically increase as the molecular elongation of 
diatomic molecule increases from the spherical monatomic 
molecule, while fbr the thermal conductivities due to 
potential energy transport the opposite is observed since the 
potential energy decreases with the molecular elongation of 
diatomic molecule as shown in Figure 2. The contribution of 
rotational energy transport is relatively slight.

The normalized heat flux auto-correlation functions of 
heat fluxes caused by translational and rotational energy 
transfer, Figures 12 and 13, are different from those auto­
correlation functions ofheat fluxes due to energy transport. 
Thermal conductivity due to translational energy transfer 
monotonically decreases with the molecular elongation of 
diatomic molecule since the translational energy transfer by 
molecular interaction is related to the potential energy, while 
for the thermal conductivities due to rotational energy 
transfer the opposite is observed and the magnitudes are 
relatively small compared with other contributions for 
thermal conductivity.

The total thermal conductivity obtained our NpT ensemble 
EMD simulation increases as the molecular elongation of 
diatomic molecule decreases from the spherical monatomic 
molecule (Table 4). This result is inconsistent with the 
NEMD simulation result for two-center Lennard-Jones 
molecules.11 Including two terms fbr thermal conductivity 
which are related to the rotational degree of freedom of 
diatomic molecule, the calculated thermal conductivity gives 
almo아 the same result to our previous EMD simulation 
study23 in which the terms related to the rotational degree of 
freedom of diatomic molecule were missing.

Conclusion

Isothermal-isobaric(NpT) molecular dynamics simulations 
for diatomic molecule systems are carried out at 94.4 K. The 
diatomic molecules are modeled by equating its volume to 
monatomic molecule like argon and by increasing the 
distance between nuclei. As the molecular elongation of 
diatomic molecules increases from the spherical monatomic 
molecule, Lennard-Jones potential energy and the total 
energy decrease, the volume increases. The distribution of 
translational energy shows a typical Maxwell-Boltzmann, 
indicating the simulation systems are well-equilibrated. The 
distribution of rotational energy has the maximum at 0 
energy, while the distribution of rotational speed shows a 
typical Maxwell-Boltzmann. Translation diffusion coeffi­
cients obtained from velocity auto-correlation functions 
(VAC) by Einstein relation are in good agreement with those 
obtained from mean square displacements (MSD) by Green- 
Kubo relation for the spherical monatomic and diatomic 
molecule systems. As the molecular elongation of diatomic 
molecules increases from the spherical monatomic mole­
cule, the diffusion coeflEicient increases, indicating that longish 
shape molecules diffuse more than spherical molecules. 
Rotational diffusion coefficients of diatomic molecules are 
not obtained from mean square displacements of unit 
orientation vector for all cases due to non-linear behavior, 
and for the L-l/12 case since angular velocity auto­
correlation function does not decay to zero. As the molecular 
elongation of diatomic molecules increases, random rotation 
decreases and the rotational diffusion coefficients are almost 
the same in the statistical error. Translational viscosity of the 
spherical monatomic molecule at 94.4 K shows a very close 
result with the experimental viscosity of liquid argon. As the 
molecular elongation of diatomic molecules increases from 
the spherical monatomic molecule, translational viscosity 
decreases. Rotational viscosity is much less than transla­
tional viscosity, indicating the pressure on the wall is 
contributed by translation motion not by rotational motion. 
In general rotational viscosity increases as the molecular 
elongation of diatomic molecules increases. Thermal 
conductivity of the spherical monatomic molecule at 94.4 K 
shows a very close result with the experimental viscosity of 
liquid argon. As the molecular elongation of diatomic 
molecules increases from the spherical monatomic mole­
cule, the total thermal conductivity by energy transport 
decreases even though the translational diffusion increases, 
the total thermal conductivity by energy transfer also 
decreases, and accordingly the total thermal conductivity 
increases. However, thermal conductivities by translational 
energy transport and by rotational energy transfer increase 
with the molecular elongation of diatomic molecule.
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