• Title/Summary/Keyword: root stress

Search Result 896, Processing Time 0.026 seconds

Isolation and Characterization of Cyclophilin 1 (ClCyP1) Gene from Codonopsis lanceolata (더덕의 주근에서 유래한 Cyclophilin 1 (ClCyP1) 유전자의 분리 및 분석)

  • 양덕춘;이강;인준교;이범수;김종학
    • Korean Journal of Plant Resources
    • /
    • v.17 no.3
    • /
    • pp.239-247
    • /
    • 2004
  • A cyclophilin 1 cDNA clone(GenBank accession no.CF924191) was isolated from the taproot of C. lanceolata and designed as C1CyP1. Determination of the nucleotide sequence of C1CyPl identified an open reading frame of 525bp, which shared high homologies with cyclophilins that were previously reported in other organisms. The C1CyP1 amino acid sequence possesses 7 amino acid residue stretch(KSGKPLH) that is characteristic of plant cytosolic dehydrins. Currently available amino acid residues of plant cyclophilins were compared to examine their phylogenetic relationship to C1CyP1. In the phylogenetic analysis, based on the aligned sequences, C1CyP1 showed high homology with arabidopsis ROC2 and rice CyP1. The transcript that corresponded to C1CyP1 was abundant in callus, but only basal level of transcript was detected in stem, leaf and root. For the study in the defense mechanism against various stresses, we report expression patterns of this gene by quantative RT-PCR.

Isolation and Expression of Aluminum Induced Protein(ClAIP) Gene from Codonopsis lanceolata (더덕에서 Aluminum Induced Protein (ClAIP) 유전자의 분리 및 발현분석)

  • 양덕춘;김종학;인준교;이범수;이강
    • Korean Journal of Plant Resources
    • /
    • v.17 no.3
    • /
    • pp.289-296
    • /
    • 2004
  • A cDNA clone (GenBank accession no. CF924621) homologous to aluminum induced protein gene was isolated and characterized from Codonopsis lanceolata (ClAIP). The ClAIP is 906 nucleotides long and has an open reading frame of 711 bp with a deduced amino acid sequence of 236 residues. The ClAIP shows high homology to A. marina (84%), G. hirsutum(83%), V. radiata (83%), A. thaliana (80%), B. nap us (78%) and T. aestivum (68%). The deduced amino acid sequence of ClAIP also has homology to the N-terminal end of plant Asn synthetase. This region does not contain the active sites of the enzyme and the significance of this conservation is currently not clear. To investigate the expression of ClAIP against several heavy metal stresses, we treated the sliced tap root of C. lanceolata with various heavy metals. The expression of ClAIP was increased by 25 uM $Al_2$(SO$_3$)$_4$ in proportion to incubation time and also increased by 50 uM CdCl$_2$.

Dental Hygienist's Job Perception of Some Prospective Graduates (일부 치위생학과 졸업예정자의 치과위생사 직무에 대한 인식)

  • Hwang, Soo-Jeong;Bae, Soo-Myoung;Yu, Ji-Su;Han, Yang-Keum
    • Journal of Korean Dental Hygiene Science
    • /
    • v.3 no.1
    • /
    • pp.25-36
    • /
    • 2020
  • Introduction: The legal duties of Korean dental hygienists are different from the actual tasks. These factors cause dental hygienists to experience work stress. Therefore, it is necessary to investigate what tasks the dental hygienist expects to perform. Methods: This study examined the perception of dental hygienists' work on 158 prospective graduates of the 3rd-year and 4th-year course of dental hygiene. The questionnaire about the dental hygienist's duties was prepared based on the job description of dental hygienists by the Korea Health Personnel Licensing Examination Institute. Results: More than 84% said that all of the work in the second job description was possible as dental hygienists. subjects responded that the following items were not dental hygienists' duties: treatment plan based on medical history and dental history, treatment plan based on an intraoral and extraoral examination, treatment plan based on the results of teeth and periodontal examination, analysis of oral health data in community, planning of oral health promotion in community, planing of water fluoridation, reading of radiography, root planing, physical treatment on head and neck, using an ultrasonic device on head and neck, dealing with laser devices, making a temporary crown, suture and stitch-out, and intramuscular injection. Conclusions: Most graduates of dental hygiene departments have recognized that the tasks described in the second job description are dental hygienists' work; therefore, it is necessary to improve the gap between expected work and legal work.

Behavioral and cardiac responses in mature horses exposed to a novel object

  • Lee, Kyung Eun;Kim, Joon Gyu;Lee, Hang;Kim, Byung Sun
    • Journal of Animal Science and Technology
    • /
    • v.63 no.3
    • /
    • pp.651-661
    • /
    • 2021
  • This study aimed to investigate whether breed, sex, and age affected temperament differently (more or less neophobic) in mature horses during a novel object test. The study included Jeju crossbred (n = 12, age = 9.42 ± 4.57 y), Thoroughbred (n = 15, age = 10.73 ± 3.09 y), and Warmblood horses (n = 12, age = 13.08 ± 3.55 y) with the females (n = 22, age = 11.36 ± 4.24 y) and geldings (n = 17, age = 10.65 ± 3.66 y). Jeju crossbreds (Jeju horse × Thoroughbred) are valuable considering their popular usage in Korea, but limited studies have explored temperament of Jeju crossbred horses. A trained experimenter touched the left side of the neck with a white plastic bag (novel object). The test ended when the horse stopped escape response and heart rate (HR) dropped to baseline. Behavioral score and escape duration were measured as behavioral variables. Multiple variables related to HR and heart rate variability (HRV) were measured to reflect emotional state. These included basal HR (BHR), maximum HR (MHR), delay to reach maximum heart rate (Time to MHR), standard deviation of beat-to-beat intervals (SDNN), root mean square of successive differences (RMSSD), and ratio of low to high frequency components of a continuous series of heartbeats (LF/HF). Statistics revealed that Thoroughbreds had significantly higher behavioral scores, and lower RMSSD than Jeju crossbreds (p < 0.05), suggesting greater excitement and fear to the novel object in Thoroughbreds. None of the behavioral or cardiac parameters exhibited sex differences (p < 0.05). Age was negatively correlated with SDNN and RMSSD (p < 0.05), indicating that older horses felt more anxiety to the novelty than younger horses. Thoroughbreds and females had distinct correlations between behavioral and HRV variables in comparison with other groups (p < 0.05), implying that escape duration might be a good indicator of stress, especially in these two groups. These results are expected to improve equine welfare, safety and utility, by providing insights into the temperament of particular horse groups, to better match reactivity levels with specific functions.

Performance Evaluation of Deep Neural Network (DNN) Based on HRV Parameters for Judgment of Risk Factors for Coronary Artery Disease (관상동맥질환 위험인자 유무 판단을 위한 심박변이도 매개변수 기반 심층 신경망의 성능 평가)

  • Park, Sung Jun;Choi, Seung Yeon;Kim, Young Mo
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.62-67
    • /
    • 2019
  • The purpose of this study was to evaluate the performance of deep neural network model in order to determine whether there is a risk factor for coronary artery disease based on the cardiac variation parameter. The study used unidentifiable 297 data to evaluate the performance of the model. Input data consists of heart rate parameters, which are SDNN (standard deviation of the N-N intervals), PSI (physical stress index), TP (total power), VLF (very low frequency), LF (low frequency), HF (high frequency), RMSSD (root mean square of successive difference) APEN (approximate entropy) and SRD (successive R-R interval difference), the age group and sex. Output data are divided into normal and patient groups, and the patient group consists of those diagnosed with diabetes, high blood pressure, and hyperlipidemia among the various risk factors that can cause coronary artery disease. Based on this, a binary classification model was applied using Deep Neural Network of deep learning techniques to classify normal and patient groups efficiently. To evaluate the effectiveness of the model used in this study, Kernel SVM (support vector machine), one of the classification models in machine learning, was compared and evaluated using same data. The results showed that the accuracy of the proposed deep neural network was train set 91.79% and test set 85.56% and the specificity was 87.04% and the sensitivity was 83.33% from the point of diagnosis. These results suggest that deep learning is more efficient when classifying these medical data because the train set accuracy in the deep neural network was 7.73% higher than the comparative model Kernel SVM.

A Preliminary study of Biomechanical Behavior of High-Performance Polymer Post-Core System (고성능 폴리머 재질의 포스트-코어 시스템의 생역학적 거동에 대한 예비실험)

  • Lee, Ki-Sun;Kim, Jong-Eun;Kim, Jee-Hwan;Lee, Jeong-Yol;Shin, Sang-Wan
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.27 no.2
    • /
    • pp.75-81
    • /
    • 2018
  • The aim of this study was to evaluate the biomechanical behavior and long-term safety of high performance polymer PEKK as an intraradicular dental post-core material through comparative finite element analysis (FEA) with other conventional post-core materials. A 3D FEA model of a maxillary central incisor was constructed. A cyclic loading force of 50 N was applied at an angle of $45^{\circ}$ to the longitudinal axis of the tooth at the palatal surface of the crown. For comparison with traditionally used post-core materials, three materials (gold, fiberglass, and PEKK) were simulated to determine their post-core properties. PEKK, with a lower elastic modulus than root dentin, showed comparably high failure resistance and a more favorable stress distribution than conventional post-core material. However, the PEKK post-core system showed a higher probability of debonding and crown failure under long-term cyclic loading than the metal or fiberglass post-core systems.

Comparision of antioxidant and anti-inflammatory activities of enzyme assisted hydrolysate from Ecklonia maxima blades and stipe

  • Lee, Hyo-Geun;Je, Jun-Geon;Hwang, Jin;Jayawardena, Thilina U.;Nagahawatta, D.P.;Lu, Yu An;Kim, Hyun-Soo;Kang, Min-Cheol;Lee, Dae-Sung;Jeon, You-Jin
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.5
    • /
    • pp.197-206
    • /
    • 2021
  • Marine brown seaweeds are a source of functional ingredients with various biological properties. They have been used in the food and functional food industries. Brown seaweeds are divided into three parts of blades, stipe, and root. Normally seaweed blades were used as raw materials for biological research. However, there are limited uses on stipes of Ecklonia maxima (E. maxima) depending on the physicochemical, nutritional, and biological properties. Besides, the comparative studies of two structures of E. maxima, blades and stipe didn't discover previously. This study aimed to compare the potent antioxidant and anti-inflammatory activities of the two structures of E. maxima, blades and stipe in vitro studies to increase the utilization of the two structures of E. maxima. The enzyme-assisted hydrolysate from E. maxima showed significant antioxidant and anti-inflammatory activities. Among them, celluclast-assisted hydrolysate from E. maxima blades (EMBC) and viscozyme-assisted hydrolysate from E. maxima stipe (EMSV) expressed significant protection on hydrogen peroxide-induced oxidative stress. Moreover, EMBC and EMSV treatment remarkably reduced nitric oxide production by downregulation of pro-inflammatory cytokine expressions in lipopolysaccharide-stimulated Raw 264.7 cells. Especially EMBC showed strong inhibition on pro-inflammatory cytokine production compared to EMSV. Taken together research findings suggest that EMBC and EMSV possessed potent antioxidant and anti-inflammatory properties and may be utilized as functional ingredients in the food and functional food sectors.

Ginseng extracts modulate mitochondrial bioenergetics of live cardiomyoblasts: a functional comparison of different extraction solvents

  • Huang, Yun;Kwan, Kenneth Kin Leung;Leung, Ka Wing;Yao, Ping;Wang, Huaiyou;Dong, Tina Tingxia;Tsim, Karl Wah Keung
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.517-526
    • /
    • 2019
  • Background: The root of Panax ginseng, a member of Araliaceae family, has been used as herbal medicine and functional food in Asia for thousands of years. According to Traditional Chinese medicine, ginseng is the most widely used "Qi-invigorating" herbs, which provides tonic and preventive effects by resisting oxidative stress, influencing energy metabolism, and improving mitochondrial function. Very few reports have systematically measured cell mitochondrial bioenergetics after ginseng treatment. Methods: Here, H9C2 cell line, a rat cardiomyoblast, was treated with ginseng extracts having extracted using solvents of different polarity, i.e., water, 50% ethanol, and 90% ethanol, and subsequently, the oxygen consumption rate in healthy and tert-butyl hydroperoxideetreated live cultures was determined by Seahorse extracellular flux analyzer. Results: The 90% ethanol extracts of ginseng possessed the strongest antioxidative and tonic activities to mitochondrial respiration and therefore provided the best protective effects to H9C2 cardiomyocytes. By increasing the spare respiratory capacity of stressed H9C2 cells up to three-folds of that of healthy cells, the 90% ethanol extracts of ginseng greatly improved the tolerance of myocardial cells to oxidative damage. Conclusion: These results demonstrated that the low polarity extracts of ginseng could be the best extract, as compared with others, in regulating the oxygen consumption rate of cultured cardiomyocytes during mitochondrial respiration.

Development of an optimized model to compute the undrained shaft friction adhesion factor of bored piles

  • Alzabeebee, Saif;Zuhaira, Ali Adel;Al-Hamd, Rwayda Kh. S.
    • Geomechanics and Engineering
    • /
    • v.28 no.4
    • /
    • pp.397-404
    • /
    • 2022
  • Accurate prediction of the undrained shaft resistance is essential for robust design of bored piles in undrained condition. The undrained shaft resistance is calculated using the undrained adhesion factor multiplied by the undrained cohesion of the soil. However, the available correlations to predict the undrained adhesion factor have been developed using simple regression techniques and the accuracy of these correlations has not been thoroughly assessed in previous studies. The lack of the assessment of these correlations made it difficult for geotechnical engineers to select the most accurate correlation in routine designs. Furthermore, limited attempts have been made in previous studies to use advanced data mining techniques to develop simple and accurate correlation to predict the undrained adhesion factor. This research, therefore, has been conducted to fill these gaps in knowledge by developing novel and robust correlation to predict the undrained adhesion factor. The development of the new correlation has been conducted using the multi-objective evolutionary polynomial regression analysis. The new correlation outperformed the available empirical correlations, where the new correlation scored lower mean absolute error, mean square error, root mean square error and standard deviation of measured to predicted adhesion factor, and higher mean, a20-index and coefficient of correlation. The correlation also successfully showed the influence of the undrained cohesion and the effective stress on the adhesion factor. Hence, the new correlation enhances the design accuracy and can be used by practitioner geotechnical engineers to ensure optimized designs of bored piles in undrained conditions.

Improvement of cadmium tolerance and accumulation of Phragmites spp. Tabarka by ethyl methane sulfonate mutagenesis

  • Kim, Young-Nam;Kim, Jiseong;Lee, Jeongeun;Kim, Sujung;Lee, Keum-Ah;Kim, Sun-Hyung
    • Journal of Plant Biotechnology
    • /
    • v.47 no.4
    • /
    • pp.324-329
    • /
    • 2020
  • Reed (Phragmites spp.) is a rhizomatous plant of the Poaceae family and is known as high tolerant plant to heavy metal contaminants. This plant is widely recognized as a Cd root-accumulator, but improved heavy metal tolerance and uptake capacity are still required for phytoremediation efficiency. To enhance capacity of hyperaccumulator plants, ethyl methane sulfonate (EMS) as chemical mutagen has been introduced and applied to remediation approaches. This study aimed to select EMS-mutagenized reeds representing high Cd resistance and large biomass and to investigate their ability of Cd accumulation. After 6 months cultivation of M2 mutant reeds under Cd stress conditions (up to 1,500 µM), we discovered seven mutant individuals that showed good performances like survivorship, vitality, and high accumulation of Cd, particularly in their roots. Compared to wild type (WT) reeds as control, on average, dry weight of mutant type (MT) reeds was larger by 2 and 1.5 times in roots and shoots, respectively. In addition, these mutant plants accumulated 6 times more Cd, mostly in the roots. In particular, MT8 reeds showed the greatest ability to accumulate Cd. These results suggest that EMS mutagenesis could generate hyperaccumulator plants with enhanced Cd tolerance and biomass, thereby contributing to improvement of phytoremediation efficiency in Cd-contaminated soil or wastewater. Further studies should focus on identifying Cd tolerance mechanisms of such EMS-mutagenized plants, developing techniques for its biomass production, and investigating the practical potential of the EMS mutants for phytoremediation.