• Title/Summary/Keyword: root and leaves

Search Result 920, Processing Time 0.022 seconds

Chemical Composition of Salicornia Herbacea L.

  • Min, Jin-Gi;Lee, Doo-Seog;Kim, Tae-Jin;Park, Jeong-Heum;Cho, Tae-Yong;Park, Dong-In
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.1
    • /
    • pp.105-107
    • /
    • 2002
  • To get basic data for the utilization of S. herbacea L. as a raw material in food and Chinese herbs, chemical compositions of its leaves, stem and root were investigated. Leaves had the highest level of moisture and the lowest bevel of total sugar. The crude protein and crude lipid contents of the stem were similar to those of the root. Crude ash and salt contents (dry basis) in leaves were considerably higher than those of the stem and root. Total amino acid contents of leaves, stem and root were 1,270 mg/100 g, 1,525 mg/100 g, and 1,569 mg/100 g, respectively. Although the amino acid compositions of loaves, stein, and root were different, their major amino acids were glutamic acid, leuicine, isoleucine and aspartic acid. The rich minerals in leaves, stem and root were Na, K and Ca.

Stem-leaves of Panax as a rich and sustainable source of less-polar ginsenosides: comparison of ginsenosides from Panax ginseng, American ginseng and Panax notoginseng prepared by heating and acid treatment

  • Zhang, Fengxiang;Tang, Shaojian;Zhao, Lei;Yang, Xiushi;Yao, Yang;Hou, Zhaohua;Xue, Peng
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.163-175
    • /
    • 2021
  • Background: Ginsenosides, which have strong biological activities, can be divided into polar or less-polar ginsenosides. Methods: This study evaluated the phytochemical diversity of the saponins in Panax ginseng (PG) root, American ginseng (AG) root, and Panax notoginseng (NG) root; the stem-leaves from Panax ginseng (SPG) root, American ginseng (SAG) root, and Panax notoginseng (SNG) root as well as the saponins obtained following heating and acidification [transformed Panax ginseng (TPG), transformed American ginseng (TAG), transformed Panax notoginseng (TNG), transformed stem-leaves from Panax ginseng (TSPG), transformed stem-leaves from American ginseng (TSAG), and transformed stem-leaves from Panax notoginseng (TSNG)]. The diversity was determined through the simultaneous quantification of the 16 major ginsenosides. Results: The content of ginsenosides in NG was found to be higher than those in AG and PG, and the content in SPG was greater than those in SNG and SAG. After transformation, the contents of polar ginsenosides in the raw saponins decreased, and contents of less-polar compounds increased. TNG had the highest levels of ginsenosides, which is consistent with the transformation of ginseng root. The contents of saponins in the stem-leaves were higher than those in the roots. The transformation rate of SNG was higher than those of the other samples, and the loss ratios of total ginsenosides from NG (6%) and SNG (4%) were the lowest among the tested materials. In addition to the conversion temperature, time, and pH, the crude protein content also affects the conversion to rare saponins. The proteins in Panax notoginseng allowed the highest conversion rate. Conclusion: Thus, the industrial preparation of less-polar ginsenosides from SNG is more efficient and cheaper.

The Characteristics and Correlation Coefficients of Characters in Panax ginseng, Violet-stem Variant and Yellow. berry Variant, and Panax quinquefolium. (고려인삼과 미국삼의 형질특성 및 형질간 상관관계)

  • 최광태;안상득;박규진;양덕조
    • Journal of Ginseng Research
    • /
    • v.7 no.2
    • /
    • pp.133-147
    • /
    • 1983
  • This study was carried out to obtain the basic information for the development of new ginseng varieties. The two variants (violet-stem variant and yellow-berry variant) of Korean ginseng (Panax ginseng C.A. Meyer) and American ginseng (Panax quinquefolium L.) of one to four-year were used for this study. All of the characteristics, such as leaf length, leaf width, petiol length, number of leaves per plant, number of leaflets per plants, stem diameter, stem length, number of stems per plant, root length, primary root length, root diameter, root weight were determined and correlations among them were estimated. The results obtained were summarized as follows. 1. Leaf length, petiol length, number of leaves per plant, and number of leaflets per plant of Panax ginseng, violet-stem variant and yellow-berry variant, were larger than those of Panax quinquefolium at all of the plant ages, while leaf width was wider in Panax quinquefolium. 2. The length of stem of Panax quinquefolium was shorter than that of Panax ginseng, and the frequency of multi-stem plants at 4-year-old ginseng was larger in violet-stem variant than in Panax quinquefolium and yellow-berry variant. 3. In the characteristics of ginseng root, the primary root length of Panax ginseng, violet-stem variant and yellow-berry variant, were less than that of Panax quinquefolium, while root weight, root diameter, and umber of secondary root related to yield were larger in Panax ginseng. 4. The root weight per plant related to the yield had positive and highly significant correlations with stem diameter, leaf length, leaf length, leaf width, number of compound leaves and leaflets in Panax ginseng and Panax quinguefolium. 5. The root weight related to the wield of ginseng had been influenced to stem diameter, leaf length, and leaf width directly, and number of compound leaves and leaflets indirectly. 6. The number, total area and activity of stomate per mm2 of Panax quinquefolium were more, larger and stronger than those of Panax ginseng.

  • PDF

Root Induction and Propagation of Sedum takesimense Nakai Using Leaf Cutting Method

  • Cheong, Eun Ju
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.1
    • /
    • pp.50-52
    • /
    • 2018
  • The effect of basal nutrients concentrations and exogenous auxin for root induction from leaves of Sedum takesimense were investigated for mass-propagation. Root induction rates were significantly different from the concentrations of basal salts but not influenced by supplemented IBA in the medium. The lowest concentration of MS basal salts (1/10) was most effective to induce roots from leaves followed 1/5 MS, and 1/2 and full strength MS medium. Supplement of IBA $10{\mu}M$ in the medium did not improve the root induction that resulted no differences compare to the hormone free media. Rooted leaves were transplanted in soil and survived in greenhouse.

An Investigation of Undescribed Black Root Rot Disease of Soybean Caused by Cylindrocladium(Calonectria) crotalariae in Korea (콩의 미기녹(未記錄) 병(病)인 Cylindrocladium(Calonectria) crotalaria에 의한 흑색(黑色) 뿌리썩음병)

  • Sung, Jae-Mo
    • The Korean Journal of Mycology
    • /
    • v.8 no.1
    • /
    • pp.53-57
    • /
    • 1980
  • An undescribed black root rot of soybean, caused by Cylindrocladium crotalariae, was observed in Suweon area. The diseased plants showed yellowing at the top and dry rot at the root. Lesions of roots and stems in the soil were red to brown and main roots were cracked. Although not observed the disease in the field, leaves of inoculated test plants in the greenhouse exhibited circular, brown lesion surrounded by chloratic halos. The fungus was recovered in culture from the infected stem and root, and the perithecia of Calonectria crotalariae were demonstrated to be present as well as the cylindrocladium state. The fungus was pathogenic to the root, stem, petioles and leaves of soybean. The probable source of primary inoculum was microsclerotia formed in infected soybean root and stem from the previous season's soybean debris. Black root rot by this fungus was considered to be one of detrimental factors to the maximum yield of soybean. From the morphological and physiological characteristics and pathogenic behaviors, this fungus was identified as Cylindrocladium(Calonectria) crotalariae.

  • PDF

Development of the Altari Radish Pre-Processing System for Kimch Production (I) - Leaf and root tail cutting equipment - (김치생산용 알타리무 전처리 가공시스템 개발(I) - 무청·뿌리끝부 절단장치 -)

  • Min Y.B.;Kim S.T.;Kang D.H.;Chung T.S.;La W.J.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.5 s.106
    • /
    • pp.451-456
    • /
    • 2004
  • To establish a Altari radish pre-processing system far kimchi, the leaves and root tail of the Altari radish cutting de-vices were developed. The cutting resistances depend on the edge angles, oblique angles and cutting speeds were measured and analyzed. The experiments were performed to reveal the optimal conditions that showed the minimum cutting resistances acting on the materials. As the results, the optimum conditions that acting on the leaves were at edge angle $25^{\circ}$, oblique angle $40^{\circ}$ and cutting speed 0.5 m/s, and those acting on the root tails were at edge angle $20^{\circ}$, oblique angle $30^{\circ}$ and cutting speed 0.5 m/s, respectively. Considered a safety conception, the oblique angle of the leaves cutting device was adjusted as $20^{\circ}$, and then the cutting efficiencies of the both devices at these conditions were showed perfect performances.

Variation in the Pattern of Isoperoxidase Bands in the Four Parts of Lespedeza cyrtobotrya Miq. (참싸리 부위별(部位別) 과산화(過酸化) 동위효소형(同位酵素型)의 변이(變異))

  • Han, Young Chang
    • Journal of Korean Society of Forest Science
    • /
    • v.30 no.1
    • /
    • pp.42-49
    • /
    • 1976
  • In order to study the variations of isoperoxidases of four parts of L. cyrtobotrya, leaves, secondary phloem, fibrous root, ovary were collected on september 29, 1975, respectively from 12 individuals which were planted in the compound of Institute of Forest Genetics, suwon, Korea. No variation of isoperoxidases appeared among the same parts which were collected from the same individual. There was a great variation in the pattern of isoperoxidase band among the 12 individuals in leaves, secondary phloem, fibrous root, and ovary. Regarding to the common occurrence band, the number was 7 in the leaves, secondary phloem, and fibrous root, while 35 bands were appeared in the ovary part. These was a great variation of occurrence band in four parts of Lespedeza. But the number of band in the parts of the Lespedeza was 4.50-5.16 on average, on the other hand there was no significant difference. No variation was observed in the activity of isoperoxidase in leaves. On the other hand, there was small varation in the secondary phloem, fibrous root and ovary.

  • PDF

Studies on the Distribution of $P^{32}$ in Radish (적장이십일대근(赤長二十日大根)에 있어서 $P^{32}$ 의 분포(分布)에 관(關)하여)

  • Kim, Hyeong-Su
    • Applied Biological Chemistry
    • /
    • v.2
    • /
    • pp.15-16
    • /
    • 1961
  • Distribution of $P^{32}$ in a pot-grown plant of the radish was studied by means of fertilization with phospbate labeled with $P^{32}$ followed by autoradiography of the dried parts. (1) An accumulation of $P^{32}$ occurs in the growth point, the root of hair, the younger leaves and the top of leaves in the radish similary other plants. (2) In the yellow leaves of the radish it was counted too weak by monitor. (3) $P^{32}$ absorbed by the root in radish was transported through the xylem of the radishtissue.

  • PDF

Growth and Ion Content of Korean Ginseng under Saline Condition

  • Cho, Jin-Woong;Seong, Bong-Jae;Kim, Hyun-Ho;Kim, Choong-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.2
    • /
    • pp.94-99
    • /
    • 2004
  • This study was conducted to determine the effect of salinity on the growth and development of Korean ginseng (Panax ginseng C.A.Meyer) and to evaluate the inorganic ion content in Korean ginseng with different general complete fertilizer (GCF) and NaCI concentrations at two growth stages. The stem height of Korean ginseng treated with different GCF and NaCI concentrations decreased at the higher EC (2.0 dS m$^{-1}$ ), but there were no significant difference in the stem diameter, the leaf length, and the leaf width among different treatments. The root growth increased with the supply of GCF. Especially, the root growth was facilitated two times at 3.0 dS $\textrm{m}^{-1}$ as compared to control. But the root growth more sharply decreased with NaCI treatment than GCF. The $\textrm{K}^{+}$ and $\textrm{Mg}^{2+}$ content in leaves and roots increased with GCF at the early growth stage. At the late growth stage, the $\textrm{K}^{+}$ content in leaves decreased but the $\textrm{Ca}^{2+}$ and $\textrm{Mg}^{2+}$ content increased. The $\textrm{Ca}^{2+}$ and $\textrm{Mg}^{2+}$ content in roots increased but the $\textrm{K}^{+}$ content decreased. The $\textrm{Na}^{+}$ content in Korean ginseng increased sharply with NaCl treatment. The $\textrm{NO}_3^{-}$ content in leaves and $\textrm{NH}_4^{+}$ content in leaves and roots increased as GCF concentration increased. The $\textrm{NO}_3^{-}$ content in leaves, stems, and roots at the late growth stage decreased as NaCl concentration increased. The $\textrm{NH}_4^{+}$ content in leaves and roots decreased significantly at the early growth stage, but it decreased significantly in leaves and stems at the late growth stage. The root activity of Korean ginseng increased with GCF, but decreased as the EC increased with NaCl. The water potential of leaves with GCF showed no significant difference compare to control, but the water potential of leaves treated with NaCl decreased as EC increased.

Vascular Differentiation in the Mature Embryo and the Seedling of Ginkgo biloba L. (은행나무의 성숙배 및 유식물에 있어서 유관속조직의 분화)

  • 홍성식
    • Journal of Plant Biology
    • /
    • v.26 no.4
    • /
    • pp.207-216
    • /
    • 1983
  • Mature embryo and developing seedlings of Ginkgo biloba L. were embedded in a paraplast and serially sectioned at 10${\mu}{\textrm}{m}$ to examine vascular differentiation and vascular transition. Procambium and protophloem formed a continuous system along the epicotylhypocotyl root axis and cotyledons in mature embryo, whereas protoxylem was differentiated discontinuously in the cotyledons and rarely in the upper hypocotyl. The traces of the first and second leaf primordia apeared almost at the same time oppositely to each otehr at the epicotyl and alternately with the cotyledon traces in the upper hypocotyl. The trace differentiated bidirectionally toward the epicotyl and root tips. the young root initially formed a diarch xylem. Then, as the traces of the first and second leaves were superimposed, the diarch xylem. Then, as the traces of the first and second leaves were superimposed, the diarch xylem of the root was changed totriarch and tetrarch xylem, respectively. On the formation of primary vascular system of Ginkgo biloba, it is suggested that the primary phloem forms a continuous system throughout the seedling, whereas the primary xylem of the epicotyl is formed independently from that of the root-hypocotyl cotyledon system.

  • PDF