• Title/Summary/Keyword: roll motion control

Search Result 150, Processing Time 0.021 seconds

Gravity Compensator for the Roll-pitch Rotation (Roll-pitch 중력 보상 기구 설계)

  • Cho, Chang-Hyun;Lee, Woo-Sub;Kang, Sung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.688-694
    • /
    • 2010
  • This paper presents a gravity compensator for the manipulator of a service robot. The manipulator of a service robot is operated with low velocity for the safety reason in most cases. In this situation gravitational torques generated by the mass of links are often much greater than dynamic torques for motion. A gravity compensator can counterbalance the gravitational torques, thereby enabling to utilize relatively low power motors. In this paper the gravity compensation for the roll-pitch rotation is considered which is often used for the shoulder joints of the manipulator of a service robot or humanoid robot. A gimbals is implemented and two 1-dof gravity compensators are equipped at the base. One compensates the gravitational torque at the roll joint and another provides the compensational torque for the gimbals. Various analyses showed that the proposed compensator can counterbalance the gravitational torques of 87% at the pitch joint and 50% at the roll joint. It is verified from dynamic simulations that the proposed compensator effectively counterbalances the gravitational torques.

Robust yaw Motion Control of Unicycle Robot (외바퀴 로봇의 진행 방향 강인 제어)

  • Lim, Hoon;Hwang, Jong-Myung;Ahn, Bu-Hwan;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1130-1136
    • /
    • 2009
  • A new control algorithm for the yaw motion control of a unicycle robot has been proposed in this paper. With the increase of life quality, there are various transportation systems such as segway and unicycle robot which provide not only transportation but also amusement. In most of the unicycle robots share the same technology in that the directions of roll and pitch are controlled by the balance controllers, allowing the robots to maintain balance for a long period by continuously moving forward and backward. However, one disadvantage of this technology is that it cannot provide the capability to the robots to avoid obstacles in their path way. This research focuses to provide the yawing function to the unicycle robot and to control the yaw motion to avoid the obstacles as desired. For the control of yawing motion, the yaw angle is adjusted to the inertia generated by the velocity and torque of a yawing motor which is installed in the center axes of the unicycle robot to keep the lateral control simple. Through the real experiments, the effective and robustness of the yawing control algorithm has been demonstrated.

Parallelism Measurement of Rolls by Using a Laser Interferometer (레이저 간섭계를 이용한 롤 평행도 측정 기술)

  • Choi, Jong Geun;Kim, Seongeun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.6
    • /
    • pp.642-646
    • /
    • 2014
  • This research describes the measurement of roll parallelism by a laser interferometer. Parallelism among rolls is an important factor for improving the precision of printing devices. A laser interferometer, which is a device for the precise measurement of distance, can be utilized to measure parallelisms between rolls. To measure distance between two rolls by using a laser interferometer, the laser must not be severed during measurement. To achieve this condition, a linear motion guide was installed to each roll being measured, and continuous measurement of distance between two rolls was implemented by the simultaneous control of two mirrors installed on the guides. The method to measure parallelism between two rolls presented in this research can be utilized to improve printing precision by enhancing parallelism between rolls in printing devices.

Development of Motion Control Techniques and Sea Trials of The Test Ship $\ulcorner$NARAE$\lrcorner$ (시험선 $\ulcorner$나래$\lrcorner$의 자세 제어 기술 개발 및 실해역 시험)

  • J.W. Kim;Y.G. Kim;G.J. Lee;C.Y. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.3
    • /
    • pp.26-37
    • /
    • 1998
  • In this study, the motion control techniques allied to the test ship NARAE are summarized and the results of sea trials are resented. NARAE adopted a hybrid hull form with lower hull and submerged foils. This type of ship has a substantial instability in heave, pitch and roll modes at the foil-borne stage due to little restoring force, so an active control is indispensable to keep the stability. 4-hydraulic actuators with servo valves were installed to drive foils, and several sensors were used to measure the motion of the ship. PID controller was adopted as a motion controller, and for the real-time control, Pentium-class industrial PC was used. Sea trials including take-off, landing, and banked turn maneuvering were carried out for a period of over 3 months and quite satisfactory results were obtained.

  • PDF

Numerical analysis of the attitude stability of a charged spacecraft in the Pitch-Roll-Yaw directions

  • Abdel-Aziz, Yehia A.;Shoaib, Muhammad
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.82-90
    • /
    • 2014
  • In this paper, the effect of Lorentz force on the stability of attitude orientation of a charged spacecraft moving in an elliptic orbit in the geomagnetic field is considered. Euler equations are used to derive the equations of attitude motion of a charged spacecraft. The equilibrium positions and its stability are investigated separately in the pitch, roll and yaw directions. In each direction, we use the Lorentz force to identify an attitude stabilization parameter. The analytical methods confirm that we can use the Lorentz force as a stabilization method. The charge-to-mass ratio is the main key of control, in addition to the components of the radius vector of the charged center of the spacecraft, relative to the center of mass of the spacecraft. The numerical results determine stable and unstable equilibrium positions. Therefore, in order to generate optimum charge, which may stabilize the attitude motion of a spacecraft, the amount of charge on the surface of spacecraft will need to be monitored for passive control.

An Analysis of the Influence of Ship Motion on the Securing and Lashing System of Containers on the Deck (파랑중 선박의 운동이 갑판적 컨테이너의 Securing 및 Lashing 시스템에 미치는 영향 해석)

  • Yun, Hyeon-Kyu;Lee, Gyeong-Joong;Yang, Young-Hoon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.181-186
    • /
    • 2005
  • A ship runs with various modes of motion due to waves. Among the modes, roll mainly influences on the safety of cargos on the deck of container ship. In order to protect cargo shifting and turning, securing and lashing system are generally installed. In that case, it is necessary that the force and moment at the connection point of containers should be estimated. Therefore we derived mathematical equations to calculate the forces of securing points and lashing wires. Also we calculated those forces and moments about various lashing patterns.

  • PDF

Analysis of instrument exercise using IMU about symmetry

  • Yohan Song;Hyun-Bin Zi;Jihyeon Kim;Hyangshin Ryu;Jaehyo Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.1
    • /
    • pp.296-305
    • /
    • 2023
  • The purpose of this study is to measure and compare the balance of motion between the left and right using a wearable sensor during upper limb exercise using an exercise equipment. Eight participants were asked to perform upper limb exercise using exercise equipment, and exercise data were measured through IMU sensors attached to both wrists. As a result of the PCA test, Euler Yaw(Left: 0.65, Right: 0.75), Roll(Left: 0.72, Right: 0.58), and Gyro X(Left: 0.64, Right: 0.63) were identified as the main components in the Butterfly exercise, and Euler Pitch(Left: 0.70, Right 0.70) and Gyro Z(Left: 0.70, Right: 0.71) were identified as the main components in the Lat pull down exercise. As a result of the Paired-T test of the Euler value, Yaw's Peak to Peak at Butterfly exercise and Roll's Mean, Yaw's Mean and Period at Lat pull down exercise were smaller than the significance level of 0.05, proving meaningful difference was found. In the Symmetry Index and Symmetry Ratio analysis, 89% of the subjects showed a tendency of dominant limb maintaining relatively higher angular movement performance then non-dominant limb as the Butterfly exercise proceeds. 62.5% of the subjects showed the same tendency during the Lat pull down exercise. These experimental results indicate that meaningful difference at balance of motion was found according to an increase in number of exercise trials.

Geomagnetic Sensor Compensation and Sensor Fusion for Quadrotor Heading Direction Control (쿼드로터 헤딩 방향 제어를 위한 지자기 센서 보상 및 센서 융합)

  • Lee, You Jin;Ryoo, Jung Rae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.95-102
    • /
    • 2016
  • Geomagnetic sensors are widely utilized for sensing heading direction of quadrotors. However, measurement from a geomagnetic sensor is easily corrupted by environmental magnetic field interference and roll/pitch directional motion. In this paper, a measurement method of a quadrotor heading direction is proposed for application to yaw attitude control. In order to eliminate roll/pitch directional motion effect, the geomagnetic sensor data is compensated using the roll/pitch angles measured for stabilization control. In addition, yaw-directional angular velocity data from a gyroscope sensor is fused with the geomagnetic sensor data using a complementary filter which is a simple and intuitive sensor fusion method. The proposed method is applied to experiments, and the results are presented to prove validity and effectiveness of the proposed method.

Development of an Active Suspension System for Passenger Cars( I ) : Construction of Prototype Car (승용차용 능동제어식 현가시스템의 개발(1) : 실험차량의 구성)

  • Hong, Y.S.;Hwang, Y.;Kim, D.Y.;Kim, Y.B.;Shim, J.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.73-82
    • /
    • 1994
  • Low-band type active suspension system is implemented on a passenger car. Level. roll, pitch and bouncing motion of body are controlled by a digital controller. Sky-hook damper is applied to control bouncing motion. This paper describes overall construction of the system, design of hydraulic system, sensor system, controller, and control scheme. Performance of prototype car has been evaluated on a test track and reported in the second paper.

  • PDF

Streamlined Rotors Mini Rotorcraft : Trajectory Generation and Tracking

  • Beji Lotfi;Abichou Azgal
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.1
    • /
    • pp.87-99
    • /
    • 2005
  • We present in this paper the stabilization (tracking) with motion planning of the six independent configurations of a mini unmanned areal vehicle equipped with four streamlined rotors. Naturally, the yaw-dynamic can be stabilized without difficulties and independently of other motions. The remaining dynamics are linearly approximated around a small roll and pitch angles. It will be shown that the system presents a flat output that is likely to be useful in the motion generation problem. The tracking feedback controller is based on receding horizon point to point steering. The resulting controller involves the lift (collective) time derivative for what flatness and feedback linearization are used. Simulation tests are performed to progress in a region with approximatively ten-meter-buildings.